Status of Adlyte's light source for inspection tools

June 13 2019

Highlights

- Adlyte AG, a Swiss Company, has been developing unique Laser Produced Plasma light source technology over last 10+ years for use in semiconductor production
- Very high brightness droplet-based light source for next generation wafer and mask inspection tools, covering from around 0.1 nm to 200 nm wavelength
- Two prototype light sources have been developed, built and tested (together with tool makers) over the last 5 years, exceeding technical requirements
- Adlyte has designed and is in the process of building HMV version of the light source for use in 24/7 applications in the Fab by 2H 2019
- Modular and extendable architecture, have operated using various fuel (Sn, In, Ga,...)
- De-risked technology with strong IP protection through a suite of patent portfolio

LPP Light Source Key Components

- Tin Droplet dispenser
- Collector
- Debris mitigation
- Laser
- Triggering and alignment
- Plasma characterization
- IF interconnect

Adlyte's light source

- Nd:YAG laser: average power of 1.6 kW, λ = 1.064 µm,10-20 kHz rep. rate
- In-house droplet dispenser with >30 µm tin droplet generation
- Closed loop droplet tracking system with laser triggering on individual droplets enables dropletlaser alignment within <10% of droplet diameter.
- Debris mitigated grazing incidence collector, including clean IF module with imaging capability.
- Compatible with various collector configurations
- Full diagnostic including in-band energy monitors and out-of-band spectroscopy

Parameters	Value	
Laser power on target	1300	W
Laser frequency	10-20	kHz
Laser focal spot, FWHM	75	μm
Conversion efficiency	>1	%
Source power at the source	>13	W
Peak source brightness	350	W/mm ² sr

Source system overview

Updated source capability and runtime

- V7 droplet generator tested
- > 35 hour continuous runtime
- Proven positional stability
- Stable droplet frequency
- Droplet timing stability:
 - Champion data
 - 1 ms avg. = $0.55 \,\mu s \,(3\sigma)$

First bounce collector optic placement

Trade-off between ion exposure and tin deposition: typically optimum btw. 40 – 90° Larger neutral cluster dominant region narrows optimum collector location

Cleanliness through reduced Debris Formation and Debris Mitigation

- A. Limit debris formation
- B. Mitigate debris
 - LAYER 1. Control debris around plasma
 - LAYER 2. Control debris in the collector module
 - LAYER 3. Control debris at IF

Advanced Target Shaping Prior to Plasma to Improve CoO

 Bursts of picosecond laser pulses allow for high order degrees of control of target shape

*figures: from submission D. Hudgins et al., 2018 Phys. Rev. E

Results lifetime assessment of EUV collection optics

- Measurement set-up for grazing incidence collection optics
 - Microscopy Particle Area Coverage (PAC)
 - At nominal collector distance:
 0.1 % after 14 hours of exposure
 - SEM PAC
 - At nominal collector distance: PAC = 0.035 %
 - EUV reflectometry
 - No reflectivity loss after 14 hours of exposure (no changes detectable below ~1 %)
 - XPS
 - At nominal collector distance: No differences detectable after sample exposure
- Acknowledgment
 - Carl Zeiss SMT for collaboration and agreement to publish

Facility Continual Improvements of Availability

 Continual improvement in droplet disperser, control system and thermal management allows availability rate of 95+ %

Recent Progress

- Continuous source operation of up to 35 hours demonstrated
- Major improvements relating to thermal management of the source for long term operation and Sn recovery
- Developed and demonstrated Pre- pulse conditioning droplet capability
- A 2X reduction in the foot print and the volume claim

Roadmap Items

- Incorporated capability for hot swap in HVM
- Integrated load locks assembly including quick connect components to maintain thermal conditions and increase uptime
- Set up specialized droplet assembly testing and calibrations
- 24 by 7 operational capability
- Integrate packaging to allow us to run system for one month without refill
- Optimize CoO for range of applications

Applications of LPP EUV Light Sources for inspection HVM

Ga, In and Sn Spectra at 30 to 50 nm:

 Indium has higher spectral radiance in He with respect to Sn and Ga

Integrated Power (Watt)

Range (nm)	Ga	In	Sn
30-50	0.27	1.70	0.69
117-137	0.94	1.66	1.34
30-163	2.38	5.8	3.7

Summary

- Stable droplet generation (Dispenser V7) > 35 hours continuous operation with improved stability: 3σ = 0.55 µs (1 ms time averaged)
- Validated source brightness of >300 W/mm² sr at 11 kHz for 80 μm source
- Three layer debris mitigation strategy including plasma site, collector and IF. Verified source cleanliness on first bounce collection optics
- Grazing and normal incidence collectors integrated in source.
- Beta light source operated as over the last 5 years, producing clean photons for inspection
- Automated operation over hundreds of hours, with validated cleanliness
- Process of building a new clean room for HVM manufacturing

Adlyte Source Ready for HVM

For present AND future nodes for both Wafer and Mask Inspection

