Thulium-based EUV Drive Lasers Scalable to Near-MW Average Powers

2019 EUVL Workshop

June 13th, 2019

CXRO, LBL, Berkeley CA

<u>Craig W. Siders</u>, siders2@llnl.gov Physicist, Senior Scientist, Commercial Tech Development Leader Constantin Haefner Program Director

> A.C. Erlandson, T.C. Galvin, S. Langer, B.A. Reagan, E.F. Sistrunk, T.M. Spinka

Advanced Photon Technologies, NIF & Photon Science Lawrence Livermore National Laboratory, DOE/NNSA

LLNL-PRES-777857

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Introduction

New Architectures for PW-Scale High Peak Power Lasers Scalable to Near-MW Average Powers and Their Application to EUV Generation

At the November 2018 EUV Source Workshop, we introduced novel high average power laser architectures based upon LLNL/ELI-Beamlines HAPLS/L3 laser:

- SHARC (Scalable High-power Advanced Radiography Capability):
 - diode-pumped Nd:Glass, 1-um wavelength
 - 150-J/150-fs/10-Hz
 - for laser-driven secondary x-rays/neutrons
- BAT (Big Aperture Thulium):
 - diode-pumped Tm:YLF, 1.9-um wavelength
 - 30-J/100-fs/10-kHz
 - for laser-driven electron/positron colliders

And we presented promising preliminary CE estimates of 2-um EUV drive lasers on Sn droplets showing on-par with CO_2 .

For this 2019's EUVL Workshop, we present results of detailed laser systems engineering modeling* for EUV-tailored design points of the BAT architecture.

*funded by LLNL LDRD office.

Pushing the frontiers of high-power applications and high-intensity science requires next-generation high repetition-rate high-energy solid state lasers.

ELI L3-High-repetition-rate Advanced Petawatt Laser System (L3-HAPLS) is the only PW-class DPSSLP laser operational today

	The second secon	ratory		÷	al
					I
					<u> </u>
-11	UL.	Л.	114	頂	
June 2	018: HA	APLS F	inal Re	eview	

July 2018

FIRST SHOT

Requirement	Specification		
Energy at 820nm	≥30 J (Phase 2)		
Pulse Length	≤30 fs		
Peak Power	≥1 PW		
Pre-pulse Power Contrast	$\leq 10^{-9} \leq c \leq 10^{-11}$		
Energy Stability	0.6% rms		
Technology	DPSSL pumped Ti:sapphire CPA		
Repetition Rate	10 Hz (Phase 2)		
Power Consumption	<150 kW		

For first experiments HAPLS was configured for ~1/2 PW at 3¹/₃Hz with a full-aperture pulse duration of 26fs

HAPLS is an operational, industry-grade "set and forget" laser system, and is a stepping stone for exploring the science of secondary sources

LLNL's BAT-Class laser architecture sets a new standard for high average power lasers with high true wall-plug efficiency

Why Tm:YLF? Long gain-lifetime and efficient diodepumping with COTS diodes

Lawrence Livermore National Laboratory

Stored energy can be extracted from laser medium with a high fluence single pulse, or multiple low-fluence pulses within the radiative lifetime

Multi-pulse extraction reduces the effective fluence in the laser system and therefore moves the operating point into a manageable regime for low cross-section materials

Big Aperture Thulium Laser Concept

Collider: 30J, 100fs, 0.3PW, 10kHz LWFA testbeds: 240J, 240fs, 1.0PW, 100Hz

300,000 W Average Power

- BAT is an extension of HAPLS Chirped-Pulse-Amplification architecture
 - 14X improvement in true wallplug efficiency
- Tm:YLF laser media
 - 1900 nm emission pumped at 790 nm
 - Two-for-one pumping = low quantum defect
 - Superior thermal wave front (- dn/dT)
 - Larger ponderomotive force

20m

Material exists today

True CW pumping

- Long lifetime (15 ms) & multi-pulse extraction
- Efficient extraction at low fluence per pulse
- 1000X average power with only 2X more diodes!

The BAT technology is the game changer to drive LPA with up to 300kW of average power per stage

Lawrence Livermore National Laboratory

By operating in a steady-state, multi-pulse extracted BAT lasers optimize efficiency AND pulse-to-pulse stability

Continuous Pumping and

Continuous Cooling

Pulsed Pumping and Pulsed Cooling

We have developed an EUV-BAT design that consists of a diode-pumped surfacecooled multi-slab amplifier in a 4-pass polarization switched architecture

Our EUV-BAT design point has minimal distortion in amplification: output pulse accurately follows seed pulse

Lawrence Livermore National Laboratory

The EUV-BAT design point has minimal distortion in amplification: precise pulse shaping

The EUV-BAT design point has minimal distortion in amplification: precise pulse shaping

The EUV-BAT design point has minimal distortion in amplification: precise pulse shaping

Lawrence Livermore National Laboratory

Our EUV-BAT design allows for amplification of a pre-pulse in the same laser

EUV-BAT model results: dual pulse output with sub-us pre-pulse and main-pulse

Tm:YLF can support very short (even sub-ps) pulse duration pre-pulse

EUV-BAT model results: rep-rate downscaling at fixed energy, and up-scaling at fixed power

- An as-built amplifier may be run at different power levels and repetition rates than its design point
 - Amplifiers most efficient near design point
- Higher rep-rate \rightarrow constant average power tuning
 - Completely electronic, maintains efficiency
- Lower rep-rate → constant energy tuning
 - Efficiency can re-optimized at new operating point by down-sizing beam size in laser

The EUV-BAT design is very flexible in its design point, and an as-built system can be tuned over a wide range of rep-rates. A research system would benefit from over-specing (e.g. 4J vs 1J @ 25-kHz) to avoid reconfiguration. Factory systems can be designed to optimum specs.

Diode-pumped Solid-State Thulium Lasers are an attractive candidate for next-gen EUV drivers

- We have developed a 100-kW BAT point design tailored for EUV application
- Design scalable to even higher powers, but unclear if target supports
- Steady-state diode pumping allows for very high pulse-to-pulse energy stability
- Flexible and robust pulse shaping
- Pre- and main-pulse in common amplifier

System-level CE, exposure, and cost trade study will layout development paths:

- Large-scale ensemble modeling of:
 - target model for CE and other important features (next talk)
 - Hydrodynamic (ALEAMR) model of droplet-to-droplet interaction
- Laser system modeling and optimization around ensemble optima
- In parallel, key risk-mitigation and reduction to practice of laser technology

