

DTU

Refractive index measurements with improved accuracy around EUV/x-ray absorption edges and impact in multilayer modeling

Regina Soufli

Lawrence Livermore National Laboratory

June 13, 2019

2019 EUVL Workshop, CXRO/LBNL, Berkeley, California

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-763977

Technical contributors and sponsors

- R. Soufli, C. Burcklen (LLNL)
- F. Delmotte, C. Burcklen, E. Meltchakov, J. Rebellato (LCF / IOGS)
 - E. M. Gullikson, F. Salmassi, J. Meyer-Ilse (CXRO / LBNL)
 - N. Brejnholt, S. Massahi, D. Girou, F. Christensen (DTU Space)

Our group at LLNL has developed short-wavelength optics for various applications

X-ray optics for the LCLS free-electron laser

Hard x-ray /gamma-ray astrophysics, radiation detection, target diagnostics

EUV/x-ray component design and modeling requires accurate refractive index values

Tabulated values of the refractive index at short wavelengths

B. Henke. E. Gullikson, J. Davis, Atomic Data Nucl. Data Tables 54, 181-342 (1993). http://henke.lbl.gov/optical_constants/ (CXRO / LBNL)

1 1																	
H 1.0079										4.0026							
3 Li 6 941	4 Be 9.0122									5 B	6 C	7 N 14.007	8 0	9 F 18 998	10 Ne 20,180		
11 Na 22.990	12 Mg 24.305									13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.065	17 Cl 35.453	18 Ar 39.948		
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 CO 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.64	33 AS 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.94	43 TC (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 126.90	54 Xe 131.29
55 CS 132.91	56 Ba 137.33	57-71 La-Lu	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 OS 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 Ac-Lr	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 HS (277)	109 Mt (268)	110 Uun (281)	111 Uuu (272)	112 Uub (285)		114 Uuq (289)				

59

Pr

140.91

91

Pa

231.04

Ce

140.12

Th

232.04

La

138.91

Ac

(227)

60

Nd

144.24

92

U

238.03

61

93

Np (237)

Pm Sm (145) 150.36

62

Pu

(244)

- Elements updated with experimental data
- Compound materials (oxides, carbides, silicides, nitrides) also need dedicated measurements

Atomic-like approximation is no	t valid neai	r electronic	absorption	edges –
dedicated measurements are n	eeded			

63

Eu

151.96

Am

(243)

64

Gd

157.25

Cm

(247)

65

Tb

158.93

Bk

(247)

66

Dy 162.50

Cf

(251)

67

Ho

164.93

99

Es

(252)

68

Er 167.26

100

Fm

(257)

69

Tm

168.93

101

Md

(258)

Yb

173.04

102

No

(259)

71

Lu

174.97

103

Lr

(262)

Complex refractive index: $n = 1 - \delta + i\beta$ with $\delta, \beta \le 10^{-1}$ (optical constants)

10

Challenges in determination of n

□ Absorption length ≈ 10 $\lambda \Rightarrow$ high absorption

Soft x-rays

1

Need bright, monochromatic, well-characterized light source facility

Sensitivity to **contamination**, surface oxidation

□ Presence of absorption edge fine structure

Transmittance: β = measured, δ = K-K relation

0,1

Hard x-rays

0,01

- \Box Need freestanding thin films 10 100 nm thick
- Need compilation of absorption (β) data in entire spectrum to calculate δ from K-K relation

Reflectance: δ and β = measured

 Sensitivity to surface roughness, contamination

VUV VUV

200

100

EUV

Vis.

800

400

IR

λ (nm)

Difficult to measure large energy bands in small step sizes

Example: tabulated refractive index of Cr is incorrect under the $L_{2,3}$ edge

C. Burcklen, R. Soufli, D. Dennetiere, F. Polack, B. Capitanio, E. Gullikson, E. Meltchakov, M. Thomasset, A. Jérome, S. de Rossi, and F. Delmotte, J. Appl. Phys. **119** 125307 (2016).

Cross-sectional TEM image of Cr/B4C multilayer

Freestanding Cr thin films

ALS beamline 6.3.2 is a precisely calibrated facility for refractive index measurements

along 3 axis

M3 (cylinder) $\theta = 2^{\circ}$

> Order Suppressor

ALS Calibration and Standards beamline 6.3.2 $\lambda = 1 - 90 \text{ nm}$ PI = Eric Gullikson

M2 (spherical)

 $\theta = 2^{\circ}$

ver. 0.44 mr.

Scan

172° deviation

Plane VLS aratings

Slit

Advanced Light Source

M1 (spherical)

 $\dot{\theta} = 2.5^{\circ}$

hor. 1.85 mr.

XR@

Critical Specifications:

High spectral purity

 $\lambda/\Delta\lambda \le 7000$

Relative spectral bandwidth

High precision ∆R/R ≈ 0.2%

High dynamic range: 10¹⁰

4-jaw

Aperture

THE CENTER FOR X-RAY OPTIC

ALS

Bending

Magnet

Cr photoabsorption measurements

The effect of 1% spectral contamination at high energies

Compilation of Cr absorption data

Complex refractive index n = 1 – δ + i β

- LD = Lorentz-Drude model. A. D. Rakić, et al., "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998).
- Palik = Handbook of Optical Constants of Solids, edited by E. D. Palik, (Academic Press, Boston, 1998) pp. 374-385.
- Henke = B. Henke , E. Gullikson , and J. Davis , "X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,"At. Data Nucl. Data Tables 54, 181-342 (1993)
- NIST = Chantler, et al.(2005), "X-Ray Form Factor, Attenuation and Scattering Tables (version 2.1)", NIST

Large differences with tabulated values revealed near the Cr $L_{2,3}$ and $M_{2,3}$ edges

New compilation of Cr refractive index (δ , β) values is now available for use

F. Delmotte, J. Meyer-Ilse, F. Salmassi, R. Soufli, C. Burcklen, J. Rebellato, A. Jérome, I. Vickridge, E. Briand, and E. Gullikson, J. App. Phys 124, 035107 (2018).

New Cr refractive index is validated by measured Cr/B_4C reflectance

We studied Pt in the vicinity of N- and O-shell absorption edges

Transmittance method: β measured, δ from K-K relation

SH1

• Pt films deposited at DTU-Space

3 mm

- Removed and mounted at CXRO/LBNL
- Pt thickness and density measured by reflectance at 8.05 keV and 83 – 188 eV

Reflectance method: δ and β from measurement

- Pt coating deposited at CXRO
- Pt thickness = 31.4 nm, density = 21.45 g/cm³ measured by reflectance at 8.05 keV and 78 - 92 eV

Measured Pt absorption near O- and N- edges

New compilation of Pt refractive index (δ , β) values is now available for use

R. Soufli, F. Delmotte, J. Meyer-Ilse, F. Salmassi, N. Brejnholt, S. Massahi, D. Girou, F. Christensen, *E. M. Gullikson, "Optical constants of magnetron sputtered Pt thin films with improved accuracy in the N- and O- electronic shell absorption regions", J. Appl. Phys. 125, 085106 (2019).*

Transmittance measurements on encapsulated W films U to protect from oxidation

regina.soufli@llnl.gov

Conclusions

Refractive index is not accurately known in EUV / x-ray

➢ We have optimized methodologies to measure Cr, Pt and W with improved accuracy near M- N- and O- edges.

More materials need measurements – accurate refractive index values will enable the design of EUV components with maximized performance

regina.soufli@llnl.gov