

# Effect of laser wavelength on EUV plasma dynamics, source efficiency, and ionic debris evolution

#### Tatyana Sizyuk

Center for Materials Under Extreme Environment (CMUXE) School of Nuclear Engineering, Purdue University, USA

> EUVL Workshop 13 June 2019 LBNL Berkeley



# Outline

- HEIGHTS Simulation Package for EUV Lithography
- **CMUXE Experiments for Source Optimization**
- Effects of Laser Parameters on Source Performance
- **The Effects on the Resulting Ion Kinetic Energies**
- Summary & Conclusions



#### **Combining State-of- the Art Modeling & Experiments**

<u>Center for Materials Under Extreme Environment (CMUXE)</u>

<u>High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS)</u>



#### **CMUXE** Laboratories



# **HEIGHTS: Integrated Full 3-D Simulation Package**



Excellent agreement with various worldwide applications/devices

> In-house benchmarking as well with CMUXE experiments

> Very flexible to solve new problems/designs and challenges

**PURDUE** 

### **HEIGHTS Simulation Package is Fully 3D**

- 3D Monte Carlo models for laser deposition/absorption in solid, liquid, vapor, and plasma
- **3D MHD** target evolution for various geometries
- **3D heat conduction in target; 3D heat conduction in plasma**
- **3D Monte Carlo and Gaussian quadrature models for radiation** transport
- □ **Moving boundaries** with receding surfaces in 3D geometry
- **Parallelized** version of HEIGHTS based on MPI



## Monte Carlo Radiation Transport

# Emission

$$N_{emi} = \int_{E_{min}}^{E} \frac{k_{emi}(E,\rho)}{\hbar^{3}\pi^{2}c^{2}} \frac{E^{2}}{e^{E/T}-1} dE$$

## Absorption

$$N(E,L) = N_{emi}(E) e^{-\int_{0}^{L} k_{abs}(E,l)dl}$$

 $N_{emi}$  – number of emitted photons;  $[E_{\min}, E_{\max}]$  – energy range; E – photon energy; T,  $\rho$  – temperature and density of the plasma;  $\kappa_{emi}$ ,  $\kappa_{abs}$  – emission and absorption coefficients;  $\hbar$  – Plank constant, c – speed of light, L – photon absorption length.



#### **Gaussian Quadrature Integration for Radiation Transport**

- Specified Directions, Spanning Total Solid Angle
- High-Order Gaussian Integration (up to 96×96 angles)

$$\frac{dI_E}{dt} = \kappa_{emi} B_E - \kappa_{abs} I_E$$
$$\mathbf{S}_{rad} = \int \left( \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} I_E(\theta, \varphi) \cos \theta \sin \theta \, d\theta \right) dE$$

1 1

ERS





#### **HEIGHTS-ATOM Calculation of Optical Coefficients**

- Free-Free, Bound-Free, and Bound-Bound Processes:
- Populations and Ion Compositions by CRE Based on HFS, HF, and Experimental Data for Low-Z Elements
- Populations and Ion Compositions by CRE Based on HFS Splitting for High-Z Elements
- LS and Intermediate Coupling Approximations
- Radiation, Stark, Doppler, and Resonance Broadening Mechanisms with Detail Spectral Profiles
- Planck and Rosseland Group Averaging with Strong Lines Resolution
- Planck and Rosseland Group Averaging for Different Temperature Regions



# Sn Transmission @ 30 eV, 0.01 g/cm<sup>3</sup>



9

S. Fujoka et al., Phys. Rev Lett 95, 235004 (2005): Reported transmission of EUV photons through 30 eV <u>0.01 g/cm<sup>3</sup></u> Sn plasma.

RHD simulation by the ILESTA-1D code Opacity simulation by the HULAC code

UNIVERSITY

HEIGHTS-CRE Detail Transition Accounting EUV photons through 30 eV <u>0.01 g/cm<sup>3</sup></u> Sn plasma

# Importance of Detail Atomic Models: Xenon Plasma Opacities



UN

10

## Monte Carlo Laser Absorption



Interaction of laser energy photons with target

**Monte Carlo models in 3D** Laser absorption, reflection, reabsorption, recycling, etc. Various laser beam directions **▲** Arbitrary distribution of laser power in time and space Laser beam focusing **Capability of multiple laser** sources with various configurations Simultaneous or time delayed laser beams



#### Dependence of EUV output on laser pulse temporal profile



Experimental laser beam temporal profile used in modeling and EUV radiation output for CO<sub>2</sub> laser

A. Hassanein, et al., Proc. of SPIE Vol. 7636 76360A-1 2010



Nd:YAG laser with Gaussian temporal profile and EUV radiation output

#### Sn foil

0.4

0.2

0.0

V

10<sup>10</sup>

ERSITY

# **Benchmarking:** Modeling of Sources for EUVL





<sup>12</sup>H. Tanaka, et al., Appl. Phys. Lett. 87 (2005)

T. Sizyuk and A. Hassanein, Physics of Plasmas 21 (2014)

13



\*Hassanein, A., et al., J. Micro/Nanolith. MEMS MOEMS 84, 041503 Oct-Dec 2009

13

<sup>\*</sup>Spitzer, R.C., et al., *J. Appl. Phys.* 79, (1996) p. 2251-2258

Laser irradiance (W/cm<sup>2</sup>)

10<sup>12</sup>

10<sup>13</sup>

Experiment

10<sup>11</sup>

LASNEX -A- HEIGHTS 500 K

#### The Role of Sn<sup>11+</sup> and Sn<sup>+12</sup> ions in EUV Production



#### **Optimization – EUV Source Location and Intensity**



#### **HEIGHTS Benchmarking: EUV Source Image**

#### 30 µm droplet; Nd:YAG, 1.06 µm



#### **HEIGHTS Simulation**

VERSITY

U N



# Efficiency of EUV sources from Sn: laser wavelength effects



#### **HEIGHTS Simulation**

H. Tanaka, et al., Appl. Phys. Lett. 87 (2005)

T. Sizyuk and A. Hassanein, Physics of Plasmas (2014)



# Efficiency of EUV sources from Sn: laser wavelength and pulse duration effects



#### **HEIGHTS Benchmarking with CMUXE Experiments**

Ions kinetic energies in experiments<sup>1</sup> and in modeling<sup>2</sup> from planar Sn target 15 mJ for pre-pulse Nd:YAG laser and 90 mJ for CO<sub>2</sub> laser



# **HEIGHTS Benchmarking with CMUXE Experiments**

Kinetic energy of ions from Mo<sup>1</sup> and Sn<sup>2</sup> plasma. Laser parameters: Nd:YAG, 2.4x10<sup>10</sup> W/cm<sup>2</sup>.



<sup>1</sup>N. Farid, S. S. Harilal, H. Ding, A. Hassanein, Physics of Plasmas 20, 073114, 2013 <sup>2</sup>T. Sizyuk, Proc. of SPIE Vol. 10957, 109571A , 2019





# Ion Kinetic Energy – Laser Pulse Effect

**30 ns** 

21

#### **HEIGHTS Simulation**

#### **10 ns**





# Summary & Conclusions

- Accurate computer simulation with <u>sufficient 3D details</u> can be used to understand, accelerate, and optimize design of LPP plasma devices
- HEIGHTS <u>simulations</u> and CMUXE <u>experiments</u> showed important effects of laser parameters on CE and on debris fluence and energy. Results are in good agreements with each other and other worldwide experiments
- Adjustment of laser spot size to droplet size differs for different lasers that related to the difference in created plasma evolution.
- Increasing of pulse duration leads to the slight increase in the CE, however, to noticeable decrease in kinetic energies of ions.
- Further optimizations in laser/target interactions, pre-pulse lasers, target fragmentation/mist formation, low-density targets, etc. are possible to enhance EUV



 $----- = \begin{bmatrix} \mathbf{M} \cdot \mathbf{U} \\ \mathbf{K} \cdot \mathbf{E} \end{bmatrix}_{22}$