EUV High-NA Wavefront Sensing

Ryan Miyakawa, Chris Anderson, Wenhua Zhu, Geoff Gaines, Carl Cork, Jeff Gamsby, Gideon Jones, Michael Dickenson, Daniel Zehm, Brandon Volmer, Seno Rekawa, and Patrick Naulleau

ISt GEN EUV

NA: 0.33 (ISOMORPHIC)

Sascha Migura et al., Proc. SPIE 9661, 31st European Mask and Lithography Conference, 96610T (4 September 2015);

ISE GENEUV

NA: 0.33 (ISOMORPHIC)

Sascha Migura et al., Proc. SPIE 9661, 31st European Mask and Lithography Conference, 96610T (4 September 2015);

2nd GEN EUV

NA: 0.55 (ANAMORPHIC)

CXRO EUV Program Overview

EUV Lithography tools

Demonstration of 15-nm half-pitch Naulleau, et. al. EUVLS 2010

Engineered coherence

11,400 resist + UL + dev combinations tested to date.

Scatterometry and coating characterization

- Spectral purity: 99.98%
- Dynamic range: 10¹⁰

EUV Mask Inspection

 $\lambda = 13.5 \text{ nm}$

4×NA: 0.25–0.625

Programmable σ

Full-mask Nav

5–10 sec/image

sharp.lbl.gov

Resist characterization

Sensitivity & contrast of EUV resists Dose Calibration Tool (DCT)

- High-NA Lateral shearing interferometry
- Laplacian wavefront sensor
- Zone plate test station

WHY DO WE NEED WAVEFRONT SENSING?

$d_{\min} \ge k$

WHY DO WE NEED WAVEFRONT SENSING?

ANSWER: TO CHARACTERIZE AND MINIMIZE ABERRATIONS FOR OPTIMAL IMAGING

Object

Image

Object

Image

Object

Image

Object

Image

ABERRATED OPTICAL SYSTEM

Imaging optic

Object

Image

POINT SPREAD FUNCTION (BLUR)

POINT SPREAD FUNCTION (BLUR)

MASK TRANSMISSION

POINT SPREAD FUNCTION (BLUR)

MASK TRANSMISSION

AERIAL IMAGE

DIFFRACTION LIMITED

DIFFRACTION LIMITED

ABERRATION LIMITED

 $d_{\min} \ge k_1 \frac{\lambda}{\lambda}$

High-NA EUV wavefront sensos

LAPLACIAN WAVEFRONT SENSOR (LWS)

LATERAL SHEARING INTERFEROMETRY

LSI working principle RETICLE (LSI SOURCE)

FROM ALS

OPTIC

GRATING

CCD

Berkeley Lab | MSD Materials Sciences Division

"INTERFEROMETRY MODE"

SHEARING INTERFEROMETER

LSI working principle

GRATING CCD

Berkeley Lab | MSD Materials Sciences Division

 $\phi_{x} = w(x + s, y) - w(x, y)$ $\phi_{y} = w(x, y + s) - w(x, y)$ +1 U

LSI working principle

 $\phi_{x} = w(x + s, y) - w(x, y)$

LEAST SQUARES ALGORITHM

(High-NA or low-NA)

Berkeley Lab | MSD Materials Sciences Division

$\phi_{Y} = w(x, y + s) - w(x, y)$

RECONSTRUCTED WAVEFRONT

Adapting LSI to high NA

$w(x + s, y) - w(x, y) \approx S \cdot dw/dx$

Adapting LSI to high NA

Berkeley Lab | MSD Materials Sciences Division

$w(x + s, y) - w(x, y) \approx S \cdot dw/dx$

$w(x + s, y) - w(x, y) \neq S \cdot dw/dx$

Multiplexed source requirements

Reticle multiplexed point source field

d **Source** <u>constraints</u>: \cdot Reticle and wafer grating periods obey: $T = mT_w$

- Coherence function of illumination: w_c < T
- Point source diffraction + illumination NA fill pupil NA

Disk illumination (0.3 σ)

GRATING ON HEXAPOD

WAFER PRINT MODULE

INTERFEROMETRY MODULE

IN-VACUUM CCD

Optical alignment 10/31/18 Pre-alignment Post

RMS WFE: 0.69 nm

Measurements taken at field center. Specification is 0.50 nm

Berkeley Lab | MSD Materials Sciences Division

Post-alignment

RMS WFE: 0.31 nm

Zernike decomposition of optical aberrations

Pre-alignment

Printing improvement

Before alignment

Berkeley Lab | MSD Materials Sciences Division

After alignment

LAPACIAN WAVEFRONT SENSOR

IDEAL OPTICAL SYSTEM

Berkeley Lab | MSD Materials Sciences Division

ABERRATED OPTICAL SYSTEM

Berkeley Lab | MSD Materials Sciences Division

EXAMPLE: X-COMA

EXAMPLE: X-COMA

Curvature library

BUILD A CURVATURE LIBRARY FOR SET OF ZERNIKE TERMS

Ν	Aberration	
3	Focus	
4	Stig 🚺	
5	Stig 🌔	
6	Coma 🥃	
7	Coma 🌔	
8	Spherical 🧿	
9	Trifoil	
10	Trifoil	

LWS reconstruction

Curvature library

Ν	Aberrati	ion	Probe	Δf
3	Focus 🤇		•	[+,-,+,-,-,+]
4	Stig 🜔)	•	[-,-,+, -, -, +]
5	Stig 🧲			[-,-,+, +, -, +]
6	Coma		•	[+,-,+, -, +, +
7	Coma 🬔		•	[+,+,+, -, -, +
8	Spherical 🤇	•		[-,+,+,+,-,+
9	Trifoil 🧯		•	[+,-,-, -, -, +]
10	Trifoil 🌔		•	[+,-,-,+,+,+

Berkeley Lab | MSD Materials Sciences Division

LWS reconstruction

Curvature library

Curvature library

Ν	Aberration	Probe	Δf
3	Focus 🔘		[+,-,+,-,-,+]
4	Stig 🚺		[-,-,+, -, -, +]
5	Stig 🛟		[-,-,+, +, -, +]
6	Coma 🤤		[+,-,+,-,+,+]
7	Coma 🚺		[+,+,+,-,-,+]
8	Spherical 🧿		[-,+,+,+,-,+]
9	Trifoil 🚺		[+,-,-,-,+]
10	Trifoil		[+,-,-,+,+,+]

LWS experiment on SHARP

NA: 0.33 / 4lambda: 13.5 nmData sets: 13 (4 gratings)Focus steps: $17 @ \Delta z = 300 \text{ nm}$ Field locations: 25

LWS experiment on SHARP

Zernike	Average peak-to-valley error mλ (pm)	Average peak-to-valley er λ/x
Focus (Z ₃)	3.01 (40.6)	λ/331
Astigmatism XY (Z ₄)	1.82 (24.6)	λ/549
Astigmatism 45° (Z ₅)	4.18 (56.4)	λ/238
Coma X (Z ₆)	1.75 (23.7)	λ/571
Coma Y (Z ₇)	1.94 (26.2)	λ/514
Spherical (Z ₈)	1.37 (18.5)	λ/726
Total RMS error	2.78 (37.5)	λ/359

3 4 5

4 5

2

2 3

1.75 mλ

(23.7 pm)

1

5

4

3

2

4

3

2

1

0.015

0.005

-0.005

-0.01

0.015

0.01

0.005

-0.005

-0.01

-0.015

-0.015

3

1

2

1

3

1.94 mλ

(26.2 pm)

0.01

2 3 4 5

4 5

2 3 4 5 1 1.37 mλ (18.5 pm)

Single aberration peak-to-valley error better than $\lambda/238$ Total RMS aberration $\lambda/359$

41

Summary of high-NA wavefront sensors

Lateral Shearing Interferometry (LSI)

- Works by measuring wavefront derivative
- Interferometric method (requires integration) of diffraction grating and CCD)
- Good sensitivity to all figure Zernike terms
- Fast measurement (between 1 and 36 data points) Lots of data required (> 100 images)
- High accuracy demonstrated (λ /100)

Laplacian Wavefront Sensor (LWS)

- Works by measuring wavefront curvature (focus shifts)
- Image-based method
- Ideal for measuring primary Zernikes terms (Z₄ - Z₉)

• Extremely high accuracy demonstrated ($\lambda/230$)

Berkeley Lab | MSD Materials Sciences Division

