
Measuring chemical image in 

photoresist

Luke Long1,2, Isvar Cordova2, Andrew Neureuther1, Patrick Naulleau2

1University of California, Berkeley 
2CXRO, MSD, Lawrence Berkeley National Lab



Motivation

• Modeling work has suggested resist with photo 

decomposable base (PDB) results in better LWR at 

a given dose than resist with conventional quencher

• This improvement comes from increased 

deprotection slope

• Experimental validation of model claims is 

paramount
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Outline

• Introduce the model

• Discuss the results

• Experimental plan

3



Model
• Model resist using the Multivariate Poisson 

Propagation Model (MPPM)

• Model cells are populated with photons, PAGs, and 
Quenchers according to the Poisson distribution
– Molecules according to mean chemical loading

– Photons according to aerial image intensity

• Deterministic reaction/ diffusion 

• Output of the model is a “deprotection” image
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PAG Image
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• PAG Image: 

white noise

• Histogram 

reveals Poisson 

distribution



Illustration
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Photon Image
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similarly populated 
with white noise, 
now spatially 
distributed

• This histogram 
shows spatial 
distribution of 
photon counts



Pre-PEB Acid Image
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• Photon image is then 
amplified stochastically 
by a yield term (not 
shown) A blurred 
version is then used 
along with the PAG 
image to generate an 
initial acid image

• Acid and base images 
fed into reaction/ 
diffusion simulation



Modeling Approach

• Analyze effect of base loading
– Photo-decomposable and conventional quencher

– Keep CD fixed by adjusting dose

• 16 nm 1:1 line/ space pattern

• Analyze the resulting deprotection image using a 
commercially available lithography analysis software

• 𝐿𝐸𝑅 =
3∗𝜎𝐷

𝑆𝑙𝑜𝑝𝑒
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LWR
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• At the same dose, 
PDB can provide 
lower LWR than 
NPDB

• PDB allows base 
loadings that are 
greater than PAG 
loading

• Are improvements in 
noise, slope, or both?



Noise

• PDB noise is 

greater for the 

same dose
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LWR
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• At the same dose, 
PDB can provide 
lower LWR than 
NPDB

• PDB allows base 
loadings that are 
greater than PAG 
loading

• Are improvements in 
noise, slope, or both?



Slope
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• Benefit of base 

loading comes 

from slope

• No degradation 

of slope at high 

base loadings



Experimental Plan

• To empirically test the role of PDB, we have 
partnered with industry to obtain a commercial 
photoresist with custom quencher loadings

• Expose and develop line/space patterns to test 
LER vs dose relationship

• Use RSoXS and AFM to probe the latent, 
chemical image in the resist prior to development
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RSoXS: Resonant Soft X-ray Scattering

• Experimentally 

rooted in CD-SAXS
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Credit: RJ Kline, D 
Sunday, 

D Delongchamp, NIST



RSoXS: Resonant Soft X-ray Scattering

• Uses soft X-rays: 

Sensitive to changes 

in bond density/ 

structure

• n = 1-𝛽+i𝛿
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RSoXS: Resonant Soft X-ray Scattering

• Uses soft X-rays: 

Sensitive to changes 

in bond density/ 

structure
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RSoXS: Resonant Soft X-ray Scattering

• Uses soft X-rays: 

Sensitive to changes 

in bond density/ 

structure

• n = 1-𝛽+i𝛿
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Simulated Scatter: Energy Dependence
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Preliminary Experimental Results
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Simulated Scatter: PDB Dependence
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Roughness

• CD-SAX technique 
is capable of 
extracting roughness 
information from 
developed lines

• Can we do the same 
with RSoXS?
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Roughness
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AFM
• Can be used to 

characterize the 

physical grating 

produced by exposure

• Provides 

complementary 

information to RSoXS
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Conclusion

• MPPM model provides insight into the sources of LER 
and suggests potential mitigation strategies

• Experimental approach to evaluating model’s accuracy:
– Standard exposure and development at a variety of base 

loadings

– RSoXS to measure the latent, chemical image in the resist

– AFM to measure the thickness change that results from 
exposure
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NPDB: Noise
• Benefit of MPPM is that 

stochastic terms can be 
toggled on and off

• For the high base 
loadings (doses), base 
is the largest contributor 
to deprotection noise

• Improvement in 
deprotection noise can 
only partially explain 
LWR trends



PDB: Noise

• Photon noise is the 
dominate contributor 
to deprotection 
noise at all base 
loadings/ doses

• QE is a more 
consistent 
contributor

• PAG contributions 
remain low
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RSoXS: Resonant Soft X-ray Scattering

• Exposure and post-exposure 
bake process produces a 
chemical diffraction grating

• Small angle X-ray scattering 
technique that utilizes 
chemical changes to produce 
contrast

• X-rays of different energies 
probe effectively different 
gratings
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Initial Acid Profiles-NPDB
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Initial Chemical Profiles- PDB
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Improved chemical 

slope leads to 

improved 

deprotection slope

Chemical 

Slope
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PDB
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-Brainard et al., JPST, 2008
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• EUV photons can 
decompose base like they 
activate PAG

• Decomposition comes at 
cost: resist is electron-
limited, and PAG and Base 
are now competing for 
resources

• Model both PAG and Base 
as photoactive compounds 
(PAC) and use PAG 
saturation data to model 
this effect



Slope → Resolution

33

Steeper slope means 

more features can fit 

into an area

Right: slope = 0.2 nm-1



Acid Slope
The deprotection reaction provides insight:

𝜕𝜌𝑑
𝜕𝑡

= 𝑘𝑑𝜌𝑎(1 − 𝜌𝑑)

Taking the spatial derivative of the rate equation and swapping 
the order of differentiation:

𝜕

𝜕𝑡

𝜕𝜌𝑑

𝜕𝑥
= 𝑘𝑑(

𝜕𝜌𝑎

𝜕𝑥
1 − 𝜌𝑑 − 𝜌𝑎

𝜕𝜌𝑑

𝜕𝑥
)

• Additional acid initially helps, but as time progresses, 
reaction slows in deprotected region, and slope degrades. 
This degradation is worse if the acid concentration is higher
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• 𝐿𝐸𝑅 =
3∗𝜎𝐷

𝑆𝑙𝑜𝑝𝑒

• Provides two 

metrics by which 

LER can be 

analyzed
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Noise/Slope Model
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Simple Noise Model

• Due to Gallatin and Naulleau, JM3, 2018

• 𝐴 = σ𝑖=1
𝑃 𝑌𝑖 − 𝐵, P, Y and B are all Poisson random 

variables

• 𝐸 𝐴 = 𝐸 𝑃 ∗ 𝐸 𝑌 − 𝐸 𝐵

• 𝑆𝐷 𝐴 = 𝑠𝑞𝑟𝑡(𝐸 𝑃 ∗ 𝑉𝑎𝑟 𝑌 + 𝑉𝑎𝑟 𝑃 ∗ 𝐸 𝑌 2 + 𝑉𝑎𝑟 𝐵 )
• Noise/Signal goes to infinity as B->E[P]E[Y]

• Benefit of base is slowing of resist, allowing P to increase 
at same CD
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Simple Noise Model, PDB

• Additional term for base decomposed. Acts like added acid

• A: acid, Q: quencher, Ya: acid yield, Yb: base yield, P: photon

• 𝐴 = σ𝑖=1
𝑃 𝑌𝑎𝑖 − 𝐵 + σ𝑖=1

𝑃 𝑌𝑏𝑖 (extra additive term from 
decomposing base)

• 𝐸 𝐴 = 𝐸 𝑃 ∗ (𝐸 𝑌𝑎 + 𝐸 𝑌𝑏 ) − 𝐸 𝐵

• 𝑆𝐷 𝐴 = 𝑠𝑞𝑟𝑡(𝐸 𝑃 ∗ (𝑉𝑎𝑟 𝑌𝑎 + 𝑉𝑎𝑟 𝑌𝑏 ) + 𝑉𝑎𝑟 𝑃 ∗
(𝐸 𝑌𝑎 + 𝐸 𝑌𝑏 )2+𝑉𝑎𝑟 𝐵 )
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Reaction/ Diffusion
• The reaction diffusion process serves to filter the input chemical and 

photon shot noise while producing the deprotection image

• This filtering process is key to smoothing out the resulting lithographic 
patterns

•
𝜕𝜌𝐴𝑐𝑖𝑑

𝜕𝑡
= 𝐷Δ𝜌𝐴𝑐𝑖𝑑 − 𝑘𝐴,𝐵 𝜌𝐴𝑐𝑖𝑑 𝜌𝐵𝑎𝑠𝑒

•
𝜕𝜌𝐵𝑎𝑠𝑒

𝜕𝑡
= 𝐷Δ𝜌𝐵𝑎𝑠𝑒 − 𝑘𝐴,𝐵 𝜌𝐴𝑐𝑖𝑑 𝜌𝐵𝑎𝑠𝑒

•
𝜕𝜌𝐷𝑒𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝜕𝑡
= 𝑘𝐴,𝐷 𝜌𝐴𝑐𝑖𝑑(1 − 𝜌𝐷𝑒𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛)
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