

Quantitative phase imaging for EUV masks

<u>Stuart Sherwin</u>^a, Laura Waller^a, Andrew Neureuther^a, Patrick Naulleau^b [a]: UC Berkeley, Electrical Engineering and Computer Science [b]: LBNL, Center for X-Ray Optics EUVL Workshop 2019

Quantitative phase imaging for EUV masks

- **1. Problem**: optical phase of absorber affects imaging for EUV masks
- 2. Objective: image EUV mask complex reflection function on SHARP
- **3. Measurements**: defocus (conventional) or coded apertures (new)
- **4. Algorithm**: PhaseLift convex solver for phase retrieval

Quantitative phase imaging for EUV masks

- **1. Problem**: optical phase of absorber affects imaging for EUV masks
- 2. Objective: image EUV mask complex reflection function on SHARP
- **3.** Measurements: defocus (conventional) or coded apertures (new)
- 4. Algorithm: PhaseLift convex solver for phase retrieval

Plane wave

- 1. Problem: optical phase of absorber affects imaging for EUV masks
- 2. Objective: image EUV mask complex reflection function on SHARP
- **3.** Measurements: defocus (conventional) or coded apertures (new)
- 4. Algorithm: PhaseLift convex solver for phase retrieval

- 1. Problem: optical phase of absorber affects imaging for EUV masks
- 2. Objective: image EUV mask complex reflection function on SHARP
- **3.** Measurements: defocus (conventional) or coded apertures (new)
- 4. Algorithm: PhaseLift convex solver for phase retrieval

Imaging the mask reflection function

CCD (Multiple images)

Zone plate (objective)

EUV Photomask (reflection function)

Imaging the mask reflection function

Imaging the mask reflection function

- 1. Problem: optical phase of absorber affects imaging for EUV masks
- 2. Objective: image EUV mask complex reflection function on SHARP
- **3.** Measurements: defocus (conventional) or coded apertures (new)
- 4. Algorithm: PhaseLift convex solver for phase retrieval

- 1. Problem: optical phase of absorber affects imaging for EUV masks
- 2. Objective: image EUV mask complex reflection function on SHARP
- 3. Measurements: defocus (conventional) or coded apertures (new)
- 4. Algorithm: PhaseLift convex solver for phase retrieval

Through-focus coherent imaging

Phase sensitivity decreases for large features

- Phase difference between 0 order and 1st order goes as $\frac{\Delta z\lambda}{n^2}$
 - For fixed Δz , λ :

$$\Delta \phi_{0,1} \propto \frac{1}{p^2}$$

1

- \Rightarrow Defocus is not good for measuring low frequencies
 - (including isolated features)

Improved detection with coded aperture

- How to introduce a large phase-shift between 0 order and 1^{st} order?
 - Zernike phase-contrast inspired coded aperture
 - Impart arbitrary phase shift on 0 order, image all other orders normally
 - Fabrication: set of zone-plates with different phase shifts on 0 order

Improved detection with coded aperture

Comparison: Raw data

- 1. Problem: optical phase of absorber affects imaging for EUV masks
- 2. Objective: image EUV mask complex reflection function on SHARP
- **3.** Measurements: defocus (conventional) or coded apertures (new)
- 4. Algorithm: PhaseLift convex solver for phase retrieval

- 1. Problem: optical phase of absorber affects imaging for EUV masks
- 2. Objective: image EUV mask complex reflection function on SHARP
- **3. Measurements**: defocus (conventional) or coded apertures (new)
- **4. Algorithm**: PhaseLift convex solver for phase retrieval

Convex problem: any initial guess works

Non-Convex

• Nonlinear, nonconvex formulation (traditional):

$$I = \left| \mathcal{F}^{-1} \{ \tilde{E} \tilde{H} \} \right|^2$$
$$\min_{\tilde{E}} \sum_{i} \left\| \sqrt{I_i} - \left| \mathcal{F}^{-1} \{ \tilde{E} \tilde{H}_i \} \right| \right\|_2^2$$

Nonlinear imaging model

Nonconvex problem

• Linear, convex formulation (PhaseLift):

 $I_{i} = \mathcal{L}_{i} \{ \tilde{E}\tilde{E}^{*} \} = \mathcal{L}_{i} \{ X \}$ Linear imaging model $\min_{X} \alpha \operatorname{Trace}[X] + \sum_{i} ||I_{i}| - \mathcal{L}_{i} \{ X \} ||_{2}^{2}$ Convex problem

Ref: Candes, E. J., Strohmer, T., & Voroninski, V. (2013). Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming. Communications on Pure and Applied Mathematics, 66(8), 1241-1274.

Recover complex *I_i*: Measured image *i* \mathcal{L}_i : Known linear operator *i* autocorrelation matrix Underdetermined \Rightarrow nullspace with iterative solver $\min_{\mathbf{X}} \alpha \operatorname{Trace}[\mathbf{X}] + \sum_{i} \| I_{i} - \mathcal{L}_{i} \{ \mathbf{X} \} \|_{2}^{2}$ Trace minimization X: Unknown complex promotes low-rank solutions autocorrelation matrix $\mathbf{X} = \tilde{E}\tilde{E}^*$ $\mathbf{X} = \tilde{E}\tilde{E}^*$ \Rightarrow True solution is rank-1 \Rightarrow Dimension is *squared*

PhaseLift walkthrough: 3-beam imaging

3 Diffraction orders3 Focus steps

Linear operator $\mathcal{L}: X \mapsto I$

Measured *I*

PhaseLift walkthrough: 3-beam imaging

True $X = \tilde{E}\tilde{E}^*$

25 Diffraction orders3 Focus steps

Linear operator $\mathcal{L}: X \mapsto I$

 $z = +z_0$ z = 0 $z = -z_0$

Measured I

True $X = \tilde{E}\tilde{E}^*$

\widehat{X} : solution from PhaseLift Error, 10x

PhaseLift walkthrough: coded aperture

True $X = \tilde{E}\tilde{E}^*$

25 Diffraction orders3 Coded apertures

Linear operator $\mathcal{L}: X \mapsto I$

Measured I

PhaseLift walkthrough: coded aperture

True $X = \tilde{E}\tilde{E}^*$

\hat{X} : solution from PhaseLift Error, 10x

PhaseLift walkthrough: coded aperture

Comparison: Raw data

Comparison: Error, 10x

Through-focus

Coded aperture

Comparison: Complex field

• Fabricate coded zone plates for 1D H/V and 2D samples

- Fabricate coded zone plates for 1D H/V and 2D samples
- Experimental comparison of coded aperture vs through-focus

Through-focus

- Fabricate coded zone plates for 1D H/V and 2D samples
- Experimental comparison of coded aperture vs through-focus
- Comparison of image-based vs scatterometry-based phase retrieval
 - Mask at CXRO, scatterometry measurements already performed

Thank you!

