Investigating radiochemistry with EUV photoemission spectroscopy

Jonathan Ma^{1,2}, Alexei Federov³, Oleg Kostko⁴, David Prendergast⁵, Andrew Neureuther^{1,2}, Patrick Naulleau²

¹UC Berkeley, ²CXRO/LBNL ³ALS/LBNL ⁴CSD/LBNL, ⁵Molecular Foundry/LBNL

- Condensed phase photoemission enables direct measurement of photoelectron energy spectrum of underlayers
- Capability to extract internal electron energy spectrum from photoemission spectrum is demonstrated
- Primary electron spectrum prediction is enabled by first principles calculations

Chemically Amplified Resist in DUV

How about EUV?

Hinsberg, W. D. and Wallraff, G. M. (2012). Lithographic Resists. In Encyclopedia of Polymer Science and Technology, (Ed.). doi:10.1002/0471440264.pst183.pub2

EUV Litho workshop 2019

4

First step: measuring the electrons

We can't measure those inside but we can measure those escaped

Berkeley

Condensed phase photoemission

http://physics.bu.edu/~ksmith/index_files/Page934.htm

What do we get?

Kinetic Energy (eV)

Photoemission of underlayers

And engineering primary electrons

The absorption problem

Underlayer as an electron source

Understand what goes into the resist

Primary electron spectra engineering

Background normalized photoelectron spectra

Different metals give different secondary electron generation efficiency

Photoemission of photoresists

polymers Photoelectrons from Ð B

Inside vs outside

Simulating electron trajectories

Internal spectrum vs photoemission

Is that the inelastic mean free path

extracting the internal electron energy spectrum from the photoemission spectrum Henke, B. L., Smith, J. A., and Attwood, D. T., *Journal of Applied Physics* 48(5), 1852-1866 (1977).

Internal Spectrum

The scattering steps are correlated

- The scattering steps or the outcoming direction of scattering events can be correlated
- That results in a longer directional memory
- Effectively a longer mean free path

Results using correlation adjusted MFP λ

We're able to recover the internal electron energy spectrum from photoemission data

Modelling Photoemission

- Where energy in the photons are converted into electron
- Determines the initial energy spectrum of electrons
- First principle calculations are carried out using Q-Chem

Modelling prototypical monomers

- The primary electron spectrum can be engineered by selecting metallic species.
- The electron energy spectrum inside photoresists can be inferred from photoemission spectroscopy
- Primary electron energy spectrum can be predicted by first principle calculations

Thank you for your attention

