

Understanding EUV Resist Performance Using Scanning Probe Microscopy

Paul Ashby

Staff Scientist Imaging and Manipulation Facility Molecular Foundry

Outline

Encased Cantilevers for In-situ AFM

Chemical Contrast Mechanisms

Factors limiting resist performance

- Pattern Collapse
- Swelling
- Poor Line Edge Roughness

Capillary Induced Pattern Collapse

60 pitch

48 pitch

 $\frac{E}{g} \in \frac{8}{W_c} A_l^3 \left(3A_s \cos q + \sin q \right)$

Combining cross-linking and chemical amplification

Cross-linking resist performance

5% oxetane cross-linkers in the resist solution patterns to higher resolution with lower line edge roughness.

Negative tone development using n-butyl acetate.

Best performer not highly cross-linked

Double development

Improved process window

Nanomechanical mapping

Modulus measures chemical change

Modulus shows chemistry through dose past full thickness and is a good nanoscale measure of chemical change.

Acknowledgements

Novel EUV Resist Material and Mechanical Characterization

l d

Prashant Kulshreshtha (Molecular Foundry) Deirdre Olynick (Molecular Foundry) James Blackwell (Intel) Ken Maruyama (JSR Micro) Sara Kiani (Molecular Foundry) Scott Dhuey (Molecular Foundry) Weilun Chao (CXRO) Patrick Naulleau (CXRO)

Kulshreshtha et. al., Nanotechnology 25 315301 (2014) doi:10.1088/0957-4484/25/31/315301 Kulshreshtha et. al., SPIE Advances in Patterning Materials and Processes XXXII, (2015), doi:10.1117/12.2086045.

Rasterkraftmikroskopie

Raster scanning saved bandwidth.

Requires constant velocity and high acceleration at the turnarounds.

Throw away half the data per image.

High Speed AFM

Ando et. al., APL, 92, 243119 (2008)

EUVL Infrastructure Development Ctr., Inc.

Resist Development by HSAFM

Toshiro Itani and Julius Joseph Santillan, Applied Physics Express, 3, 061601 (2010)

Toshiro Itani and Julius Joseph Santillan, Advanced Lithography 2018 DOI:10.1117/12.2294585

Breaking the paradigm

Sensor Inpainting

Non-Gridded Sensor Data

Final Rendered Image

Spiral scanning

All scan lines are in same direction.

The Optimal Spiral

Spiral Scans vs Raster scan

Optimal Spiral is safest and fastest!

Spiral Comparison

18

Optimal spiral has highest fidelity over the whole image.

Alternate Waveform Comparison

	Raster	Spirograph	Lissajous	CLV	CAV	ΟΡΤ
Maximum Angular Frequency	> 9.0	3.1	2.0	>50	1.0	2.1
Angular frequency Variation	>1.5	0	0	1.2	0	0.5
Speed	2.3	3.1	4.9	1.0	2.0	~1.1
Average Sample Density	0.4	1.0	1.0	0.95	0.95	0.95
Maximum Sample Density		22	49		39	19
Sample Density Variation	0	0.3	0.5	0	0.39	0.04
Data Prioritizes Center			×			\checkmark
Adjacent Scan Lines are similar	\checkmark	×	×	\checkmark	\checkmark	\checkmark

Acknowledgements

High speed Spiral Scan AFM

Dominik Ziegler (Molecular Foundry) Andrea Bertozzi (UC Los Angeles) Travis Meyer (UC Los Angeles) Adrian Nievergelt (Molecular Foundry) Andreas Amrein (ETH Zurich)

Ziegler, et. al., Nanotechnology, v24, 335703, 2013 Ziegler, et. al., IEEE Mechatronics, v22, p381-391, 2016.

Liquid Compromises Resolution

Pentacene Gross, et. al. *Science* v325 p1110 (2009)

Tubulin filament Fukuma, et. al., *Biophysical Journal* v101 p1270 (2011)

Low Force Noise Cantilevers

$$F_n = \sqrt{4k_B T b}$$

$$f_n = \sqrt{4k_B T b}$$

$$f_n = \sqrt{4k_B T b}$$

$$f_n = 7 f N / \sqrt{Hz}$$

$$f_{weezers}$$

$$f_$$

Encased Cantilevers

Changing η

Encased Cantilever Fabrication

Regular Si Cantilever

PECVD

125 μm long 30 μm wide 40 N/m, 300 kHz, Q~500 25 fN/√Hz

20 μm long 10 μm wide 1 N/m, 1 MHz, Q~200 3.5 fN/√Hz

Encased Cantilever Performance

Single clean resonance peak.

High Q and high frequency, performance as in air ($F_n=12 \text{ fN}/\sqrt{Hz}$)

-Only small frequency shift (1%) \rightarrow No Added Mass

-Viscous damping of tip (few $\mu\text{m})$ and double sided squeeze film damping

Water at Mica

Ultra-small amplitude displacement of the last few water layers single curve no averaging

Present Day Encased Cantilevers

Acknowledgements

Encased Cantilevers for In-situ AFM

Dominik Ziegler (Molecular Foundry and SPT) Adrian Nievergelt (Molecular Foundry) John Sader (University of Melbourne) Sina Sidighi (SPT) Christina Newcomb (SPT) Hilary Brunner (SPT) Remo Blum (SPT)

SCUBA PROBE TECHNOLOGIES

Ziegler, Ashby, et. al., IEEE MEMS, p128, 2014 DOI:10.1109/MEMSYS.2014.6765590. Desbiolles et. al., Beilstein J. Nanotechnol., 9, 1381-1389, (2018) doi:10.3762/bjnano.9.130.

Conclusion

High speed Spiral Scan AFM

Encased Cantilevers for In-situ AFM

High-Amounts of Cross-linker Due to Chain Progating Reaction

Nanotechnology 25 315301 (2014) doi:10.1088/0957-4484/25/31/315301

Resist dissolution

Toshiro Itani and Julius Joseph Santillan, Applied Physics Express, 3, 061601 (2010)

Sematech efforts at the Foundry

2

Latent image gives higher resolution

Developed sample

(d) Height

(e) Modulus

Latent image depth changes matches modulus

Use biasing to improve modulus

Conclusions

AFM provides high spatial resolution information of dissolution process

15 frames per second of soft material available with new Z piezo design

Modulus Measurement is a promising high resolution probe of chemistry through dose

Modulus and Latent Image Depth Show Chemistry Far Beyond Full Thickness

Bias Can be Used to Increase Modulus and Reduce Pattern Collapse

Improved modulus with bias

No Bias:

Bias:

High Speed Spiral Scanning

Calcite Dissolution

Asylum MFP3D 90 μm scanner Usually 100-200s per image

5 μm image 100 loops 5s/image

Fast Survey

Asylum Cypher 40 μm scanner Usually 40s per image

1 μm image 85 loops 8 frames/s

Fast Z with tilt correction

Slow Z piezo handles drift and sample tilt.

Fast Z only does topography.

