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OVerlay
Critical Dimension

Nowadays requirements:

▪ Critical dimension 7 nm

▪ Overlay metrology << 1 nm

Modern computer chip have small features... 
... even quality control is challenging

Periodic Structures



Optical OV Metrology for future sensors

Benefits of DBO metrology

▪ OV measurement precision < 1nm 

▪ Non-scanning & Non-destructive

▪ FAST

3

I+1 I-1
Iill

I+1I-1
Iill

OV =
I+1 − I−1

K

Diffraction Grating

Requirements of future sensors

▪ Detect weak scattering targets (Diff.Eff. < 1%)

▪ Small sized targets (5x5 um ) 

▪ Longer wavelength ranges

▪ Optics with High NAs & low aberrations

▪ Any alternatives???
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Light scattering from periodic structures

Optics with High NAs & low aberrations

Any alternatives???



Simple Optics requires digital corrections
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Lens Aberrations

Image imperfections  
Back Propagation

Data Processing
Digital holography

Complex Field
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Image reconstruction with Digital Holographic Microscopy
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▪ Complex light field acquisition

▪ Coherently mixed light 

▪ Amplifies weak detection signal

▪ Direct phase measurements

𝑰 𝒙, 𝒚 = 𝑶 𝒙, 𝒚 + 𝑹 𝒙, 𝒚 𝟐

= 𝑶 𝒙, 𝒚 𝟐 + 𝑹 𝒙, 𝒚 𝟐 + 𝑶𝑹∗𝒆𝒊𝟐𝝅(𝚽±𝛅)𝐱 + 𝑪. 𝑪.

Typical Digital Holographic Microscope
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▪ In-line : extract phase via phase-shifting

▪ Multiple scans

▪ Off-Axis : extract phase via Fourier Transform

▪ Single-Shot Acquisition
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Dark-Field Holography measures relevant information but has 
requirements on temporal coherence length
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Camera Side

▪ Delay (ΔL) on the illumination generates

▪ Phase difference 

▪ Limited interference based on temporal coherence

▪ Derive the requirements for digital holography

▪ Balance Bandwidth – Coherence length

Why dark field?

▪ Oblique illumination beam 

▪ Discard specular reflection from Iill

▪ Separate illumination & detection 

optics to reduce stray light

Diffraction Grating

ΔL

Wafer Side
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Solving the impact of coherence

▪ 1D implementation of df-DHM model

▪ Detected intensity for Quasi-Monochromatic Source

Outcome:

▪ Field-of-View is limited by the bandwidth (B)
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Dark-Field Holographic Microscope

Light Source : SLD at 785 ± 10 nm

Bandwidth: 46 ± 10 nm, 

Bandpass filters: 10 ± 2 nm, 5 ± 1 nm

CCD camera: pixel pitch: 5.5 μm  

CCD camera: # pixel  = 2336x1752

FoV : 400 μm 

Actual Magnification: 24.5x

    

Target 1: Blazed grating with 833 nm Pitch

Target 2: ASML test wafer with multiple pitches

Numerical aperture: 0.5

Working distance: < 6 mm

C. Messinis, et al., Submitted



Solving the impact of coherence

▪ Field-of-View is limited by the bandwidth (B)
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FoV with fringes: 75 (±14) um

Bandwidth : 10 nm

Target 1: Blazed grating with 833 nm Pitch

FoV with fringes: 130 (±10) um

Bandwidth : 5.5 nm

FoV with fringes: 30 (±25) um

Bandwidth : 46 nm

▪ Synopsis for in-line DHM

▪ From θref = 5.2 mrad



Off-axis df-DHM 

▪ Target 2: ASML test wafer

▪ Bandwidth: 10 nm

▪ Reference angle of 2

▪ Larger FoV than in-line

▪ Separation of cross-correlation terms

▪ Single-Shot reconstruction
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FoV = 210 um
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Introduced delay due to oblique illumination

Off-axis adds delay to reference arm 
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In-line df-DHM vs Off-Axis df-DHM



Summary
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▪ Derived a model that describes the impact of 

coherence length on the FoV for df-DHM

▪ This model provides requirements for parameters to 

design and predict the limitations of a setup

▪ Off-axis df-DHM offers some advantages over in-line 

DHM:

▪ Enlarges the FoVs

▪ Offers single shot reconstruction
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Directions – Future plans

▪ Improve the capabilities of df-DHM – meet industrial requirements

▪ Increase magnification to image smaller targets (5x5 um )

▪ Use high power light sources for targets with low diffraction efficiencies

▪ Demonstrate OV errors for large wavelength range

▪ Demonstrate proof of principle aberrations correction

▪ Measure OV error with our setup
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