
1

The transition from short to long timescale 
pre-pulses

Laser-pulse impact on tin microdroplets. 

Randy Meijer
EUV Litho Source Workshop
Nov 4 2019



2

The transition from short to long timescale 
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Kurilovich, D. et al. Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact. Phys. Rev. Appl. 6, 1–8 (2016).
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Kurilovich, D. et al. Expansion Dynamics After Laser-Induced Cavitation in Liquid Tin Microdroplets. Phys. Rev. Appl. 10, 1–7 (2018).

Kurilovich, D. et al. Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact. Phys. Rev. Appl. 6, 1–8 (2016).
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‘Long’‘Short’

What is short, what is long,
and what is in between??
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Interlude: Flexible pulse laser @ ARCNL 
λ = 1064 nm, (Nd:YAG)

Meijer, R. A., Stodolna, A. S. & Eikema, K. S. E. High-energy Nd : YAG laser system with arbitrary sub-nanosecond pulse shaping capability. Opt. 
Lett. 42, 2758–2761 (2017).
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Interlude: Flexible pulse laser @ ARCNL

λ = 1064 nm, (Nd:YAG)

• CW seeded

• Pulse duration

0.43 ns → 1.1 us

• Energy (100 Hz)

300-500 mJ

• Multiple pulses, 1 laser

• PP, MP

Meijer, R. A., Stodolna, A. S. & Eikema, K. S. E. High-energy Nd : YAG laser system with arbitrary sub-nanosecond pulse shaping capability. Opt. 
Lett. 42, 2758–2761 (2017).
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Interlude: Flexible pulse laser @ ARCNL
λ = 1064 nm, (Nd:YAG)

• CW seeded
• Pulse duration

0.43 ns → 1.1 us
• Energy (100 Hz)

300-500 mJ
• Multiple pulses, 1 laser
• PP, MP

• Realignment and 
improvements, see 
poster S74

Meijer, R. A., Stodolna, A. S. & Eikema, K. S. E. High-energy Nd : YAG laser system with arbitrary sub-nanosecond pulse shaping capability. Opt. 
Lett. 42, 2758–2761 (2017).



Experiment
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• Pulse durations
0.5 ns – 7.5 ns FWHM

• Droplet size = 45 µm

• Gaussian focus
45 µm FWHM

• Shadowgraphy
Spatial res. = 7 µm
Temporal res. = 5 ns



Deformation transition
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Eod = 0.4 mJ

Eod = 2.2 mJ Pulse duration



High energy
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• Same trend 
observable

• New observed cloud 
towards laser 
(Triple dome structure)

• Strong fragmentation
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Quantifiable observables
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Propulsion

• Agreement with 
previous found scaling*

• New scaling with pulse 
duration obtained

• 𝑈 ∝ 𝜏𝑝
0.3

*Kurilovich, D. et al. Power-law scaling of plasma pressure on laser-ablated tin microdroplets. Phys. Plasmas 25, (2018).
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Radial expansion
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• Energy on droplet 
dominant factor

• Minor differences 
between ‘short’ & ‘long’

0.5 ns : 0.75 –> 7.5 ns:  0.65
(Sheet expansion prediction 0.6)

1. Kurilovich, D. et al. Expansion Dynamics After Laser-Induced Cavitation in Liquid Tin Microdroplets. Phys. Rev. Appl. 10, 1–7 (2018).
2. Kurilovich, D. et al. Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact. Phys. Rev. Appl. 6, 1–8 (2016).
3. Klein, A. L. et al. Drop fragmentation by laser-pulse impact. (2019).
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Spall velocity
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• Peak intensity relevant parameter

• Collapse of all square pulse shapes (No effect of duration)

• Characteristic timescale

0.40(1)



Conclusions
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By studying droplet deformation as function of pulse duration we find:

- Deformation types coexist and transition ‘smoothly’.

- Scaling of propulsion with pulse duration.

- Remarkably little sensitivity of expansion velocities.

- Spall velocities promising tool to understand shockwaves.

On our way to answering: What is ‘short’, what is ‘long’.
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Gaussian vs. Square pulse shape

Square pulse shows stronger shockwave induced deformation and less plasma push. 


