

Blue – X (EUVL Extension): Status and Update

Vivek Bakshi, EUV Litho, Inc. 2019 Source Workshop, November 6, 2019

Presentation Outline

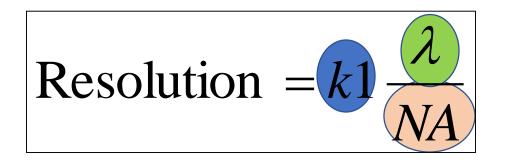
- EUVL Past, Present, Near Future (next 10 yrs) and Future (10-20 yrs)
- Case for EUVL extension
- Blue-x (Change of wavelength of emitter and drivers) Progress so far
- Options for EUVL extension
- Need for consensus
- List of Open Questions and proposed subgroups
- Summary

EUVL – Lessons from Its History: Last 35 years

- 1980s: Early concepts with soft x-rays (<u>4-40 nm</u>) <u>patterning can be done</u> in wide range of soft X-ray wavelengths
- 1989: EUVL at 13.5 nm was formally agreed upon, mostly because of ML ML is a key deciding factor although source determines its success
- 1997: EUV-LLC was formed for EUVL commercialization <u>Consensus is</u> needed for start development of new technology
- ~ 35 years to get EUVL from labs to fabs <u>Long time to develop a new</u> technology
- However, we have learned how to address many key challenges. So <u>this</u> <u>time it will be a shorter cycle time than 35 years!</u>
 - High power sources in soft X-ray, Optics, contamination and still learning about resist

EUVL Status Today and Expectations for Next 10 Years

- 30 EUVL scanners of 0.33 NA will be delivered in 2019
 - Multiple patterning EUVL is already here
- High NA scanners will be ready in 2023-2025
 - End users are ready for them now and will prefer them over 0.33 NA MP today
- High NA scanners will be very quickly used in multi-patterning mode
- Extension of Moore's Law in 2025-2030 will be enabled by High NA MP EUVL



Long term Future for EUVL: 2030 - 2040

- Google last week showed a proof for "Quantum Supremacy"
 - Quantum computers will gain more traction in practical application
 - Quantum computer will start working together with classical computers
 - Focus will shift to "Information Processing" from adherence to "Moore's Law"
- Extension of Moore's law will become very expensive and Challenging
 - High NA MP EUVL will face increasing challenge and will become lot more difficult
 - We will face yield issues similar to 5x 193iMP
 - We will need "Higher Octane" version of EUVL
- This will be the time period where Blue-X Extension of EUVL will be very much needed
- Now is the time to start looking into the feasibility of Blue-X

Basic Case for EUVL Extension: We have already tried two out of three knobs

- Path of k1 need more power we will always use this until k1~ 0.3 and we have to go to multiple patterning.
- Path of NA Results in a much larger tool
- Path of λ (Sources and drive lasers) Blue –X!

Path of k1, λ or NA – future choices

Res (nm)	Δ (nm)	∆ (%)	k1	λ (nm)	NA
8	4	34%	0.3	13.5	0.5
6	2	25%	0.3	6.7	0.33
4	2	34%	0.3	6.7	0.5
1.32	4.77	78%	0.3	2.2	0.5
1.00	0.32	24%	0.3	1.1	0.33

Progress So far in Blue –X in one year....

- Community Response has been <u>very positive</u>
 - Two sessions each in 2018 Source Workshop, 2019 EUVL Workshop and Source workshop
- BAT (2 micron Thulium) laser from LLNL, shared with community first time during 2018 EUVL workshop, has emerged as a potential new key component - may allow us two key benefits:
 - More Intensity (similar CE) and much better COO
 - Power scaling beyond CO₂ lasers
- Due to work for last few years, 6.x ML peak reflectivity can be >70% (Univ. Twente).
- Combining 6.x nm ML with BAT lasers, we already have a potential Blue-X solution for extension of EUVL! We want to know what else is possible.
 - Previously 6.x nm was reviewed and abandoned due to ~ 50% reflectivity, need for > 100 kW drive lasers and attention needed on 13.5 nm to address remaining issues

Progress So far in Blue –X in one year

- We are now also looking at water window ML to get higher wavelength reduction but ML reflectivity is only ~ 35%
- Progress on 6.x and others ML will be reported in this session
- Newer optical designs are possible for scanner (fewer reflections) but they will allow LIMITED patterning options. What are the new possibilities?
 - Reduction of peak reflectivity from 0.7 to 0.4 will require reflections to go from 11 to 5 for the same throughput.

Options on EUVL Extension: Traditional (1A/B) or Blue-X (1C-3B)

Option	Name	λ (nm)	NA	Laser	Open Questions		
					Source	Laser	Optics
1A	Traditional	13.5	0.5	CO ₂		Laser Feasibility	
1B	Traditional	13.5	>0.5	CO ₂		Laser Feasibility	Size
1C	Blue-X	13.5	0.5	BAT		Laser Feasibility	
2A	Blue-X	6.x	<=0.5	CO ₂		Laser Feasibility	
2B	Blue-X	6.x	<=0.5	BAT		Laser Feasibility	
3A	Blue-X	<6.x	<=0.5	CO ₂	Source Choices	Laser Feasibility	ML
3B	Blue-X	<6.x	<=0.5	BAT	Source Choices	Laser Feasibility	ML

Lots of Choices and We Need consensus: Proposal for Creating Community Consensus

- Define initial questions in the area of sources, drive lasers, optics, optical design and resist
- Form sub-groups that will answer those questions and deliver answer in 2020 Source Workshop (some answers may be ready sooner in June EUVL Workshop)
- Assign a moderator (s) for each group who will collect responses and report in the next meeting.

Questions for Sources

- What are three potential sources that community needs to focus on: Higher Z UTA and or low z single transitions?
- Criterion for selection:
 - Conversion efficiency and Power scaling
 - Power requirements for drive lasers
 - Wavelength
- What are the questions that modeling can help us answer?
- Members: <u>ARCNL, UCD</u>, Utsunomia University, Osaka University, ASML, Gigaphoton, ISAN, Fraunhofer and others

Questions for Drive Lasers

- What are the potential drive laser technologies for >100 kW range?
- Criterion
 - Power scaling
 - Cost of Ownership
 - Commercial Availability
 - CE and plasma properties of LPP produced by these lasers
 - Modeling will be needed to support this study
- Members: LLNL, Trumpf, Northup Grumman, Mitsubishi

Questions for ML Optics

- What are potential best choices for ML at various wavelengths?
- What projects do we need to pursue to investigate significant improvements?
- Members: <u>optiXfab</u>, Univ Twente, LLNL, Universite Paris-Saclay

Questions for Optical Design and Resist

Optical Design

- What can we do with a design with fewer reflection?
- Members: Zeiss, K&M Innovation and others

• Resist

- Interaction of lower wavelength / higher energy photon with resists – Stochastics and other challenges need to be studied.
- Members: PSI, IM, TBD

Summary

- EUVL extension beyond "High NA MP" will be needed in ~ 10 years.
- We need to start evaluating various options now
- Need community consensus on options so that we can focus on few options and evaluate them in depth
- List of questions (source, drive lasers, optics, optical design, resist) have been proposed together with groups for evaluating
- Community consensus will be reported in coming workshops

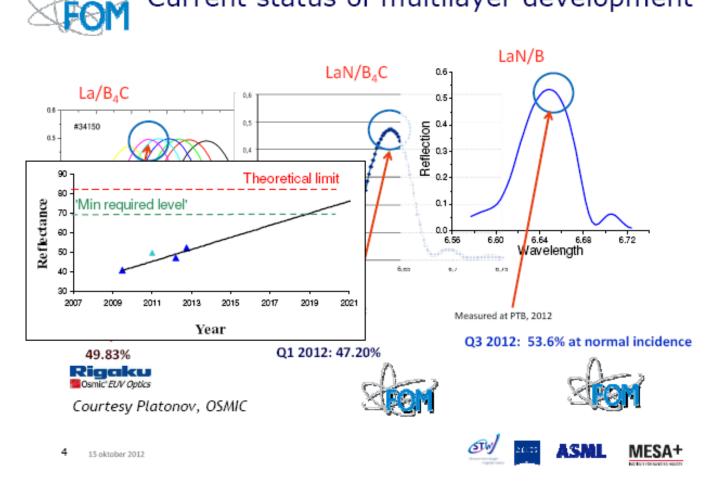
One last item - Progress so far...

My action item has been completed......Get the Blue-X license Plate

Backup

Scaling via Wavelength reduction

- Unidentified transition arrays (UTA) give us way to scale wavelength with high conversion efficiency
- We move to higher Z element with reduced wavelength
 - How do lighter elements compare?
- + Established infrastructure and suppliers
 - Cymer and Gigaphoton for HVM
 - Many others suppliers for metrology sources
- (-) Higher drive laser power 100- 300 kW. May need to move away from CO₂ lasers


Summary of Challenges for sources

- Source LPP
 - Need to define CE for various UTA vs drive laser requirements
 - Drive lasers
 - CO₂ lasers 40 kW + modules for current version. 100 kW for optically pumped
 - BAT New drive laser technology from LLNL
- Sources FEL
 - Advantage due to tunability of required wavelength
 - Size (large for proven versions and unproven for smaller version)
 - Radiation, peak power (ML damage), band width
 - Technology demonstration

Scaling via Wavelength reduction: Optics At 6.7 nm, 54% reflectivity Obtained (2012), 80% possible. What about other wavelengths?

Current status of multilayer development

Eric Louis, Source Workshop, 2011

Scaling via Wavelength reduction: Optics Current Status for ML optics at shorter wavelengths

- Main challenges for short wavelength optics:
 - Peak reflectivity
 - Bandwidth
 - Interface roughness

λ, nm	1.4	2.4	2.7	4.4	6.7	9.0	12.0	13.5
R, %	0.02	18.1	26.2	16.8	61.0	36.0	49.2	70.1
FWHM, nm	0.002	0.005	0.008	0.02	0.05	0.11	0.32	0.52

Torsten Feigl, 2018 Source Workshop

Next Steps for the community: Questions for us to answer

- ML Optics
 - What are the best reflectivity and bandwidth we can get in the 1-13.5 nm region?
 - New ML deposition technologies for reducing interface roughness?
 - What other innovations are possible?
- Key obstacle is ML (> 70% peak reflectivity) or optical design (11 reflections)? What can we do with tool with fewer reflections but with lower ?
- Source
 - Is UTA the option the best which one? Lighter elements?
 - CE vs wavelength?
 - Drive lasers for 100- 300 kW which technology offers best CoO?
 - FEL can we deliver 500- 1000 W, while addressing current concerns about FEL
- Any other challenges?

