
LLNL-PRES-796037

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Efficient high power laser drivers for 
next-generation High Power EUV 
sources 
2019 EUVS Workshop

ARCNL, Amsterdam Craig W. Siders, siders2@llnl.gov
Physicist and Senior Scientist for Advanced Photon Technologies

A.C. Erlandson, T.C. Galvin, H. Frank,
S. Langer, B.A. Reagan, H. Scott, E.F. Sistrunk, T.M. Spinka

Advanced Photon Technologies, NIF & Photon Science
Lawrence Livermore National Laboratory, DOE/NNSA

November 6th, 2019



2
LLNL-PRES-796037

Sierra: 

125-PetaFLOP

World’s 2nd fastest supercomputer

HAPLS: World’s fastest Petawatt laser

NIF: World’s highest energy laser

LLNL is a premier Science-based

Stockpile Stewardship Laboratory

Why does LLNL care about EUVL?

>420000 10-kJ beam-shots

>2500 full system (MJ) shots
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Why does LLNL care about EUVL?

2019

Sierra

125-PetaFLOP

2023

El Capitan

1 ExaFLOP
(ordered in 2019)

1015 transistors

Why does LLNL care about EUVL?
Because Stewardship is FLOPS

Cost/transistor fundamentally 
underlies Stewardship.
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Pulsed 10-mm CO2 lasers are the drivers of choice for the main 
pulse in 13.5-nm Sn EUV system

50-kHz, 10’s-ns, 

~1-J, 40 -kW average, 

MW’s peak power,

~5% E-O efficiencies

~1-3% wall-plug

10-mm CO2

10-mm CO2

1-mm Nd

CO2 lasers were the early choice for 13.5-nm EUV 

development

- Scalable high-power laser architecture

- Long wavelength well matched for MP 

interaction

- DPSSL (diode-pumped solid-state laser) tech in 

infancy

CE: ~5-6%
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§ The highest 
conversion efficiency 
obtained for 3.6-
GW/cm2. The 
emission peaks at 
wavelengths shorter 
than 13.5 nm.

§ Pulse lengths were 
varied to match burn-
through times.

1D HYDRA Simulations of 13.5 nm EUV emission for Sn/2-µm 
evidence conversion efficiencies on-par with CO2

2.1-GW/cm2

1.35-GW/cm2

0.4-GW/cm2

3.6-GW/cm2
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2-µm SWIR lasers should be considered for next-gen EUV drive lasers.
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At the November 2018 EUV Source Workshop, we introduced 
novel high average power diode-pumped laser architectures 
based upon LLNL/ELI-Beamlines HAPLS/L3 laser

• SHARC (Scalable High-power Advanced 

Radiography Capability): 

• diode-pumped Nd:Glass, 1-um 

wavelength

• 150-J/150-fs/10-Hz

• for laser-driven secondary x-

rays/neutrons

• BAT (Big Aperture Thulium): 

• diode-pumped Tm:YLF, 1.9-um 

wavelength

• 30-J/100-fs/10-kHz

• for laser-driven electron/positron 

colliders

And we presented promising preliminary CE 

estimates of 2-um EUV drive lasers on Sn droplets 

showing on-par with CO2.
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At the June 2019 EUV Lithography Workshop, we presented 
results of detailed laser systems engineering modeling for EUV-
tailored design points of the 2-mm BAT architecture. 

• We developed a 100-kW BAT point design 

tailored for EUV application

• Design scalable to even higher powers, 

but unclear if target supports

• Steady-state diode pumping allows for 

very high pulse-to-pulse energy stability

• Flexible and robust pulse shaping

• Pre- and main-pulse in common amplifier

System-level CE, exposure, and cost trade study will layout development paths:

• Large-scale ensemble modeling of:

• target model for CE and other important features

• Hydrodynamic (ALEAMR) model of droplet-to-droplet interaction

• Laser system modeling and optimization around ensemble optima

• In parallel, key risk-mitigation and reduction to practice of laser technology

6
LLNL-PRES-DRAFT

LLNL’s BAT-Class laser architecture sets a new standard for high 
average power lasers with high true wall-plug efficiency

CO2: 0.2-J 

100-kHz

Estimated from EO-efficiency

Tanino et al, 2013 ISEUVL

LPA: 240-J 100-Hz

LPA: 240-J 200-Hz

EUV: 1-J 

100/50/25-kHz

LPA: 30-J 

10-kHz

EUV: 4-J 

25-kHz

LPA: 3-J 

10-kHz

BAT

SHARC

DPSSLP: D
iode-Pumped Solid

-

State Laser P
umped Ti:S

apphireSHARC: D
ire

ct D
iode-

pumped Nd:G
lass

LPSSLP: L
amp-Pumped Solid

-

State Laser P
umped Ti:S

apphire

BAT: D
ire

ct D
iode-pumped 

Big Apertu
re Thuliu

m Laser

DPSSLP

LPSSLP

Output

Scaling laser power at fixed efficiency is 
insufficient: must also increase efficiency

Solid-State Laser 
Efficiencies

CO2 Laser 
Efficiency
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PeakCE

3.5%

3.6%

10.6-mm CO2

2-mm Tm:X, Ho:X

For this 2019 EUV Source Workshop, we haven taken the first 
steps in this system-level EUV source trade study

Sn vapor

From Monday’s talk: Steve Langer, et al., 

“An Optimization Study of EUV Sources 

Driven by CO2 and Thulium Lasers”

5-mm CO

2.8-mm HF

3.8-mm DF

4.6%

2.9-mm Er:YAG

2.5-mm Cr:ZnX(Se,S,Te)

(chemical)

(chemical)

1-mm Nd:X, Yb:X

Note: 1D HYDRA predicted absolute efficiencies are lower than 

experimental.  More experimental pinning required to correct 

absorbed laser energy.  Relative comparisons are more valid.

Wavelengths 

used for 

CE data in 

literature.1%

1D HYDRA ensemble modeling agrees with our earlier on-par 

CE for 2 vs 10mm, and shows a potential 1% gain (20% relative) 

CE Contours
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Paramount questions raised by these results

• Where is the peak? 

• There must be a peak – either before (5mm?), at or after 10-mm

• There is no (?) data between 1-mm and 10-mm

• What is the peak?  What defines the optimum wavelength?

• EUV CE? – highest emitted EUV energy / incident laser energy

• EUV energy/mg-Sn? – extended useful collector life

• Laser wall-plug electrical power to EUV CE? – highest EUV power / MWe

• Wall-plug power to EUV power ( ~10-6 now)? – max #scanners / MWe

• Wall-plug electrical power to EUV power/ mg-Sn? – max wafers/days/facility

We will examine wall-plug to CE, as an example.
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Three key components to DPSSL-EUV system efficiency: 
diode efficiency, quantum defect and EUV CE
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Efficient, Electrically 

Pumpable Laser Media
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Three key components to DPSSL-EUV system efficiency: 
diode efficiency, quantum defect and EUV CE

CEEUV
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Low(-ish) quantum defect SWIR/MWIR (CO, Cr:X) lasers suffer 
from poor diode efficiency

CEEUV
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Tm:YLF, pumped by efficient ~800nm diodes, would appear to 
have a poor quantum defect
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Two-for-one pumping in Tm:YLF provides efficient 790-nm diode 
pumping and 2-um SWIR lasing 
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l/4

Relay 

Diodes

Diodes

Diodes

Closed loop 

He gas cooling

Closed 

loop

He gas

cooling

Spatial Filter

Injection 

Transport Relay 

Polarizer 

Main
Pulse
+ Pre-
Pulse 
Front
End

Relay 

Amp 2 Amp 1

Adaptive 
optic

Dual-pulse EUV-BAT design allows for amplification 
of a pre-pulse in the same laser

sub-us’s, MW’s

~109-13W/cm2

1-J @ 100-kHz 

design point
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BAT
• 300,000 W Average Power
• BAT is an extension of HAPLS architecture

• Initially designed for future laser-plasma accelerators (LPA)
• very high efficiency, high rep-rate

▪ Tm:YLF laser media 
— 1900 nm emission pumped at 790 nm
— 2-for-1 pumping = low quantum defect
— Superior thermal wave front (-dn/dT)
— ~5x energy storage of Nd:G
— Material exists today

The BAT architecture is a game changer to drive future LPA‘s with 300kW of average power per stage

Tm:YLF Boule ~10cm

Big Aperture Thulium Laser Concept
30J, 100fs, 0.3PW, 10kHz (DOE HEP)
240J, 240fs, 1.0PW, 100Hz (EuPRAXIA)
1J, ps-ns, 100-kHz (EUVL)

• True CW pumping with COTS diodes
• 1000X HAPLS average power with only 2X more diodes, half the size
• Long lifetime (15 ms) enables multi-pulse extraction (MPE)
• Efficient extraction at low fluence per pulse using MPE (~102/gain-lifetime)

• Low B-integral and below damage fluence

FY20 risk reduction new starts:

• DOE HEP Accelerator 

Stewardship Grant 

• LLNL LDRD “HEATER” project



16
LLNL-PRES-796037

By operating in a steady-state, multi-pulse extracted BAT lasers 
optimize efficiency AND pulse-to-pulse stability

Continuous Pumping and 

Continuous Cooling

Pulsed Pumping and 

Pulsed Cooling
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Storage Density:
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Gain saturation:

pulse distortion

Low gain:

no distortion, 

easy shaping
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High PRF CO2 lasers transition into the MPE regime

SPE Energy

Storage Density:

~50J / liter

MPE Energy

Storage Density:

~J’s / liter

Time [us]

Time [us]

CO2 lasers face reduced energy storage & gain as PRF increases.  1) Add stages (at same 
efficiency) to recover final laser pulse energy.  2) Pump harder.  3) Operate at higher pressure.

CO2 vs Tm:YLF:

>100x less inversion density

5x less energy per photon

CO2 vs Tm:YLF:

EUV PRF’s are closer to

1/gain-lifetime, and so

are more sensitive to

PRF increase and

more prone to chaotic

pulse-2-pulse instabilities 
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Optimized EUV Tm:YLF Design Points based up ensemble results

Frequency 50 kHz 75 kHz 100 kHz

Shot Energy (J) 0.6 0.6 0.6

Laser Power (kW) 30 46 60

𝜼𝒐𝒑𝒕𝒊𝒄𝒂𝒍→𝒐𝒑𝒕𝒊𝒄𝒂𝒍 23.4% 24.4% 26.1%

𝜼𝒘𝒂𝒍𝒍𝒑𝒍𝒖𝒈→𝒐𝒑𝒕𝒊𝒄𝒂𝒍 10.1% 10.6% 11.4%
3.6%

EUV Tm:YLF design scale nicely to higher PRFs and 
shows further efficiency increases

Scaling: 

assume 100-ns max, 

400-um focus:

Next steps: include laser architecture optimization 
model, including lasant (Tm, Yb, Nd) and hosts (e.g. YLF, 
YAG, glass), in the Merlin HYDRA workflow for machine 

learning optimization of combined EUV system
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Tm:YLF laser architecture is ~3x more efficient than CO2 systems: 
Future 3-for-1 upgrade path for Sn EUV sources? Blue-X CE Trade?

CO2: 0.2-J 

100-kHz

Gigaphoton / Mitsubishi

LPA: 240-J 

100-Hz

LPA: 240-J 

200-Hz

EUV: 

100/50/25-kHz

LPA: 30-J 

10-kHz

EUV: 4-J 

25-kHz

BAT

SHARC

DPSSLP

LPSSLP-TiS

Output

Scaling laser power at fixed efficiency is 
insufficient: must also increase efficiency

Solid-State Laser 

Efficiencies

CO2 Laser 

Efficiency

CO2: 1-J 

100-kHz

EUV: 0.6-J 50-kHz

EUV: 0.6-J 75-kHz

EUV: 0.6-J 100-kHz

CO2: 0.3-J 

100-kHz

3-for-1
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Tm:YLF-EUV Source Science Development Path

Longer Storage Time = Greater Storage

TiS: 3-us

Nd:G 300-us

Yb:YLF 1-ms
Tm:YLF 15-ms

Tm:YLF SPE Energy

Storage Density:

50kJ / liter

• Thermal management is the chief risk for the high average power EUV 

Tm:YLF laser concept, which we are actively reducing with FY20 efforts.  

• However, shot-on-demand (damage limited) and (~100-pulse) burst-mode 

operation using the very high (50-kJ/liter) energy storage density of Tm:YLF

skirts those thermal issues and enables compact and portable system 

designs which are much nearer term.

We envision a burst-mode Tm:YLF EUV driver which could be brought to EUV 
source development sites for collaborative test & simulation campaigns

CW pump @ fixed intensity
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Paramount questions

• Where is the peak? 
• There must be a peak – either before (5mm?), at or after 10-mm

• There is no (?) data between 1-mm and 10-mm

• What is the peak?  What defines the optimum wavelength?
• EUV CE? – highest emitted EUV energy / incident laser energy

• EUV energy/mg-Sn? – extended useful collector life

• Laser wall-plug electrical power to EUV CE? – highest EUV power / MWe

• Wall-plug power to EUV power ( ~10-6 now)? – max #scanners / MWe

• Wall-plug electrical power to EUV power/ mg-Sn? – max wafers/days/facility

How close are we to the peak?
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4J 25 kHz

EUV-BAT model results: rep-rate downscaling at fixed energy, 
and up-scaling at fixed power

Baseline BAT Design Point

25-kHz DP

4J DP 

25 kHz

• An as-built amplifier may be run at different power 

levels and repetition rates than its design point

• Amplifiers most efficient near design point

• Higher rep-rate → constant average power tuning

• Completely electronic, maintains efficiency

• Lower rep-rate → constant energy tuning

• Efficiency can re-optimized at new operating 

point by down-sizing beam size in laser

50 kHz DP 100 kHz DP

1-J tune

4-J tune

The EUV-BAT design is very flexible in its 
design point, and an as-built system can 
be tuned over a wide range of rep-rates.  

A research system would benefit from 
over-specing (e.g. 4J vs 1J @ 25-kHz) to 
avoid reconfiguration.  Factory systems 

can be designed to optimum specs.


