

B-based ML coatings for Blue-X

Philipp Naujok, Tobias Fiedler, Marco Perske, Hagen Pauer, **Torsten Feigl** optiX fab GmbH, Jena, Germany

Sergiy Yulin, Sven Schröder

Fraunhofer IOF, Jena, Germany

IOF

History

- **1997:** Start of EUV multilayer development @ Fraunhofer IOF
- **2013:** August 1st: Operations start @ optiX fab.
- **TODAY:** Delivery of **14,258 EUV and X-ray mirrors** to customers
- Mission Fabrication of customized EUV optics and optical components for EUV lithography @ 13.5 nm, for EUV, soft and hard X-ray applications, synchrotron and FEL beamlines, metrology, R&D, HHG sources, etc.

Torsten Feigl

Marco Perske

Hagen Pauer

Tobias Fiedler

Philipp Naujok

2 I 2018 International Workshop on EUV and Soft X-ray Sources, Prague, Nov. 6, 2018

ML coatings for short wavelengths

main issues for ML coatings at shorter wavelengths ($\lambda < 13.5$ nm):

1st: lower reflectance

typical experimental values for near normal incidence:

13.5 nm: R ≤ 70 %

6.7 nm: R ≤ 65 %

4.4 nm: R ≤ 15 %

2.4 nm: R ≤ 20 %

3 | 2018 International Workshop on EUV and Soft X-ray Sources, Prague, Nov. 6, 2018

ML coatings for short wavelengths

main issues for ML coatings at shorter wavelengths ($\lambda < 13.5$ nm):

1st: lower reflectance

typical experimental values for near normal incidence:

13.5 nm: $R \le 70 \%$

6.7 nm: R ≤ 65 %

4.4 nm: R ≤ 15 %

2.4 nm: $R \le 20 \%$

2nd: lower bandwidth

4 | 2018 International Workshop on EUV and Soft X-ray Sources, Prague, Nov. 6, 2018

ML coatings for short wavelengths

- strongly decreasing bandwidth (FWHM) of the ML coating for shorter wavelengths
- reason: higher number of required contributing interfaces

5 I 2018 International Workshop on EUV and Soft X-ray Sources, Prague, Nov. 6, 2018

λ, nm	1.4	2.4	2.7	4.4	6.7	9.0	12.0	13.5
R, %	0.02	18.1	26.2	16.8	61.0	36.0	49.2	70.1
FWHM, nm	0.002	0.005	0.008	0.02	0.05	0.11	0.32	0.52

⁶ I 2018 International Workshop on EUV and Soft X-ray Sources, Prague, Nov. 6, 2018

La/B_4C – simulation vs. experiment

Simulation:

- > 250 bilayers of La and B₄C
- period thickness (La + B₄C): d = 3.4 nm
- ideal layers:

First experiments:

- very low reflectance
- huge difference between simulation and experiment

La/B_4C – simulation vs. experiment

Simulation:

- > 250 bilayers of La and B₄C
- period thickness (La + B₄C): d = 3.4 nm
- ideal layers:

Optimized experiments:

- still low reflectance
- huge difference between simulation and experiment

HR-TEM of La/B₄C-ML

Fraunhofer IOF

Reducing the interface width

1. Utilizing chemically stable materials

Reducing the interface width

1. Utilizing chemically stable materials

2. Application of barrier layers

B ₄ C
La
B ₄ C
La
B ₄ C
La
B ₄ C
La (~ 1.4 nm)
B ₄ C (~ 2.0 nm)
substrate

Theory:

- Iowering chemical reactivity between B and La
- high peak reflectance achievable using La compounds
- expectation: higher experimental reflectance due to more narrow interfaces
- promising candidates:
 - LaN [1]
 - LaC₂

[1] T. Tsarfati et al., Thin Solid Films 518, 1365–1368 (2009)

	EUVR @ 6,65 nm				
System	R _{exp} [%]	Δλ _{exp} [nm]			
La/B ₄ C	51.1	0.036			

P. Naujok et al., Thin Solid Films 612, 414-418, 2016

- increased reflectance due to less chemical rection between La and B₄C
 - R = 55,2 % @ 6,65 nm (LaC₂)

P. Naujok et al., Thin Solid Films 612, 414-418, 2016

- increased reflectance due to less chemical rection between La and B₄C
 - R = 55,2 % @ 6,65 nm (LaC₂)
 - R = 58,1 % @ 6,65 nm (LaN)

P. Naujok et al., Thin Solid Films 612, 414-418, 2016

Reducing the interface width

- barrier thickness 0.3 ... 0.5 nm
- important critera:
 - optical properties
 - film growth
 - chemical reactivity with La, B, C, N

simulation for ideal layers:

- huge impact on reflectance by extremly thin barriers
- no increased reflectane with

Mo (ΔR = - 15.3 %) ZrN (ΔR = - 8.0 %)

- huge impact on reflectance by extremly thin barriers
- no increased reflectane with

Mo (ΔR = - 15.3 %) ZrN (ΔR = - 8.0 %)

 increased reflectance with C-barriers

C (ΔR = + 2.0 %)

Fraunhofer

- huge difference between ideal and experimental reflectance at 6.7 nm wavelength
- reflection losses due to roughness, intermixing and chemical reactions at the interfaces

- huge difference between ideal and experimental reflectance at 6.7 nm wavelength
- reflection losses due to roughness, intermixing and chemical reactions at the interfaces

best results:

- La/B₄C: R = 51.1 %
- LaN/B_4C : R = 58.1 %

- huge difference between ideal and experimental reflectance at 6.7 nm wavelength
- reflection losses due to roughness, intermixing and chemical reactions at the interfaces

best results:

- La/B₄C: R = 51.1 %
- LaN/B₄C: R = 58.1 %
- LaN/C/B₄C: R = 60.1 %

- huge difference between ideal and experimental reflectance at 6.7 nm wavelength
- reflection losses due to roughness, intermixing and chemical reactions at the interfaces

best results:

- La/B₄C: R = 51.1 %
- LaN/B₄C: R = 58.1 %
- LaN/C/B₄C: R = 60.1 %

next steps:

- current championship data: R = 64.1 % using La/LaN/B [2]
- target for HVM: R > 70 %
- therefore: lower chemical reactivity, optimize barrier layers needed

[2] D. Kuznetsov et al., Optics Letters 40 (16) (2015)

Thank you.