

Optical properties of multilayers for operational wavelength between 6.x and 13.5 nm

Andrey Yakshin, Dmitry Kuznetsov, Andrey Zameshin, Igor Makhotkin, Eric Louis, and Fred Bijkerk

Source Workshop, Amsterdam, November 4-6, 2019

Outline

- Latest results on La/B-based multilayers for 6.x nm
 - Normal incidence
 - Grazing incidence
- Optical properties (spectral and angular bandwidth) of MLS in 6.7 13.5 nm
 - Calculations
 - Experimental verification

2

6.x nm: La/B based multilayers

R (La/B4C) ≈ 45%

S.S. Andreev et.al., Nuclear Instruments and Methods in Physics Research Section A, Vol.603, Iss.1-2 (2009)

 \rightarrow Broad interfaces formed (optically unfavorable)

Passivated La

R (LaN/B) \approx 57%

Technique for La passivation: magnetron sputtering of La in N₂ environment

I.A. Makhotkin et.al., Optics Express, Vol.20, No.24 (2013)

XPS of test structures: BN formation

Nitrogen flow varied for LaN deposition in order to get fully-passivated LaN

- XPS → BN formation during deposition ΔH(BN)≈ - 255 kJ/mol
- The higher the N2 pressure the more BN is formed

D.S. Kuznetsov et.al., Optics Letters, Vol.40, No.16 (2015)

Delayed La nitridation

NWO

LaN/B

Malvern Panalytical ASML

 \rightarrow LaN protecting upper interface but making lower interface worse

> UNIVERSITY **MESA+** OF TWENTE. INSTITUTE

LaN/La/B MLS reflectivity

Sample with lateral period gradient of 0.23 Å/mm

D.S. Kuznetsov et.al., Optics Letters, Vol.40, No.16 (2015)

Influence of spot size on measured R

Grazing incidence LaN/B MLS

Two weeks after deposition

- Linked to oxidation
- B layers intact
- O2 diffuses through B
- Oxidation of LaN, > 1 period

Optical microscopy: blister like defects Puzzle: no deterioration in case of La without nitridation!

 \rightarrow B protective properties against oxidation depend on substrate layer

D.S. Kuznetsov et.al., Journal of Nanoscience and Nanotechnology, Vol.19, 585-592 (2019)

In situ studies of growth of La and LaN

La LaN At 2-3 nm At 2-3 nm Crystallization Slow increase Roughness from Sharp increase from 2-3 nm of LaN 5 nm of La (111) FCC (111) ZB* + (001) WZ* Lattice

- Mixed crystal structure of 2-3 nm LaN may be the reason for higher roughness
- Complex LaN structure could possibly affect top B layer structure

B.Krause et.al., Journal of Applied Crystallography, Vol.51, 1013-1020 (2018)

OF TWENTE.

INSTITUTE

ASML

Panalytical

NWC

Multilayer reflectivity at 6.7 nm

- Stability to storage in air > 2 years
- R=74.5% vs theoretical 79%

D.S. Kuznetsov et.al., Journal of Nanoscience and Nanotechnology, Vol.19, 585-592 (2019)

Outline

- Update on La/B-based multilayers for 6.x nm
 - Normal incidence
 - Grazing incidence
- Optical properties (spectral and angular bandwidth) of MLS in 6.7 13.5 nm
 - Calculations
 - Experimental verification for Mo/Si

10

Promising canidates for 6.7 - 13.5 nm

Pair	d nm	λ max, nm	R max@ λ max	Experimental R	AOI off-normal	Ref.
Mo/Si	6.4	13.5	73.8	>70% @13.5 nm	1.5°	
Mo/Be/Si		12.9	76.0	72.8%@12.9 nm	21.3°	V.N.Polkovnikov et.al., PXRNMS, Paris, 2018
Pd/Sr	5.8	11.4	80.9	No data		
Ru/Be	5.6	11.2	79.0	63.7@11.4 nm	5°	S. Bajt et al., Colorado, July 19-23 (1999)
Mo/Be	5.6	11.2	76.7	70.3%@11.3 nm	6 °	Svechnikov M.V. et. al., Optics Express 26, 33718-31 (2018)
Ag/BP	4.7	9.3	78.5	No data		Idea: V.V.Medvedev et.al., Optical Materials Express, Vol. 5, Issue 6, (2015)
LaN/B	3.3	6.7	79.3	66.5%@6.7 nm	1.5°	D.S.Kuznetsov et.al., Optics Letters, Vol.40, No.16 (2015) + this presentation

• Reflectivities above 66.5% achieved below 13.5 nm and further progress is possible

 \rightarrow Should also consider <u>angular</u> bandwidth for shorter period multilayers

Angular bandwidth dependence

- Angular bandwidth directly affects numerical aperture \rightarrow resolution
 - $NA \propto \sin \theta$
 - feature size $\propto \frac{\lambda}{NA}$

Generally $\Delta \theta$ will decrease with λ

- Spectral bandwidth $\sqrt{\frac{\Delta\lambda}{\lambda_0}}$ decreases with wavelength λ
- Analytical approximation *

$$\Delta \theta = 2 \sqrt{\frac{\Delta \lambda}{\lambda_0}}; \ \theta_0 = 90^\circ; \ \text{atomic scattering factors } f_1, f_2 = const$$

* I. V. Kozhevnikov and A. V. Vinogradov, Multilayer X-ray Mirrors (1995)

Angular vs wavelength and spectral bandwidth

- In general angular bandwidth decreases with wavelength
- Angular BW for La/B drops x2 compared to Mo/Si, which counterbalances benefit of wavelength reduction
- Close to absorption edges:
 opposite dependence for all systems
- Interesting potential for Mo/Si in case of tunable narrow-band source

R and spectral bandwidth - experimental

- \rightarrow General trends in agreement with calculations
 - □ R increasing by about **1.5%** close to edge
 - Spectral bandwidth reduces closer to edge
- \rightarrow Strong discrepancy in Si edge position (~1A or ~0.9eV)
 - Cannot be explained by silicide interlayer formation
 - □ Calls for more accurate measurements of optical indices (CXRO data used)

Angular bandwidth - experimental

- \rightarrow General trend of angular bandwidth in agreement with calculations
- \rightarrow Angular bandwidth does not decrease when moving from 13.5 to 12.5 nm
- \rightarrow Some discrepancy of the absolute angular bandwidth value calls for further research

Conclusions

- 6.7 nm wavelength
 - R=66.5% achieved experimentally at 1.5 degrees
 - R=74.5% achieved experimentally at 77 degrees
 - Further progress in R is possible
 - Smaller angular bandwidth at 6.7 nm needs solutions
- Angular bandwidth does not reduce with wavelength near absorption edges, which is beneficial for high NA systems
- For tunable narrowband source (FEL) → switching from 13.5 nm to 12.6 nm has advantages
 - Shorter wavelength
 - Higher reflectance (at least +1.5%) \rightarrow lower absorption
 - Same angular bandwidth \rightarrow no negative effect on NA
 - \rightarrow Mo/Si ML @ 12.6 nm is a good choice

Acknowledgements:

UNIVERSITY | MESA+ OF TWENTE. | INSTITUTE

