

XUV scatterometry and fluorescence for nano-structured surfaces

Frank Scholze, Anna Andrle, Analía Fernández Herrero, Anton Haase, Philipp Hönicke, Mika Pflüger, Quais Sadeeh. Victor Soltwisch

PTB, Department Radiometry with Synchrotron Radiation

Metrology with SR: Motivation

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Wed. Nov 6, 2019

Metrology with SR: Radiometry beyond UV

EUV-source workshop Amsterdam

Metrology with SR: Radiometry beyond UV

PTB laboratories @ BESSY I, II, MLS

since 2008: MLS

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin Wed. Nov 6, 2019

5

BESSY II:

circumference 250 m electron energy 1.7 GeV

PTB:

34 m

10 beamline branches from 400 nm (3 eV) to 0.02 nm (60 keV)

Metrology Light Source MLS circumference 48 m electron energy 100 - 630 MeV 8 beamlines from 8 mm to 4 nm (300 eV)

Basic PTB capabilities: detector calibration

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Wed. Nov 6, 2019

Basic PTB capabilities: XUV reflectometry

7

X-ray reflectometry (XRR):

Reflectance is measured as function of the incidence angle

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin Wed. Nov 6, 2019

Basic PTB capabilities: XUV reflectometry

Avogadro constant:

$$N_A = \frac{M V r}{m}$$

m : mass M : molar mass V : volume n : atomic densitiy

Realization of a "perfect" Si crystal sphere

Determination of the number of atoms by measuring all other parameters thus determining the Avogadro constant.

By defining the value of this constant, the mass unit can be determined.

How perfect is ", perfect"? Si + $O_2 = SiO_2$!

uncertainty < 10⁻⁸ needed !

The mass (thickness) of the oxide Layer must be accurately determined

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Wed. Nov 6, 2019

XUV reflectometry for dimensional metrology

X-ray reflectometry: Thickness determination by interference patterns in reflectance

laboratory: Cu-K_{α}

Monochromatized SR: tunable

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

Wed. Nov 6, 2019

New metrology challenges

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Wed. Nov 6, 2019

Reconstruction of Silicon nanostructures

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin Wed. Nov 6, 2019 prototype samples:

lamellar gratings fabricated with E-beam lithography

Pitch 50 -150 nm Linewidth 25 – 65 nm Height 25 -100 nm (etched into Si, Si3N4)

GISAXS and XUV-Scatterometry

transfer the GISAXS approach to lower photon energy (XUV) & work at steeper angle to reduce the footprint

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Wed. Nov 6, 2019

GISAXS scattering pattern

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Wed. Nov 6, 2019

Wed. Nov 6, 2019

Numerical precision depends on incident angle

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin Wed. Nov 6, 2019 National Metrology Institute

EUV-source workshop Amsterdam

Reconstruction of 2D nanostructures

reconstruction examples for differently shaped laminar lines using GISAXS

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin Wed. Nov 6, 2019

Reconstruction of 2D nanostructures

Objective function, uncertainty budget

$$\tilde{\chi}^2(E) = \sum_m \frac{\left(I_m^{\text{model}}(E) - I_m^{\text{meas}}(E)\right)^2}{\sigma^2(E)}.$$

include variation of uncertainties (maximize likelihood):

$$\log\left(\frac{1}{\sqrt{2\Pi\sigma^2}}\right) - \frac{(I_m - I_s)^2}{2\sigma^2}$$
 with (e.g.) $\sigma^2 = (ax)^2 + b^2$

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin Wed. Nov 6, 2019

Reconstruction of 2D nanostructures

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin Wed. Nov 6, 2019

GISAXS for small areas

PIB

What about dense structures ?

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Wed. Nov 6, 2019

GISAXS: 4μm x 4 μm target 40 lines @ 100 nm pitch

National Metrology Institute EUV-source workshop Amsterdam

19

PB

GISAXS for small areas

Just rotate a tiny bit.....

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Wed. Nov 6, 2019

Combined GISAXS & GIXRF

21

Idea:

combine GISAXS and GIXRF in XUV spectral range

- footprint reduction
- light elements accessible
- elemental sensitive spatial distribution

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin Wed. Nov 6, 2019

Combined GISAXS & GIXRF

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin Wed. Nov 6, 2019

PIB

Combined GISAXS & GIXRF

Intensity variation with AoI => position sensitivity via standing wave field

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin Wed. Nov 6, 2019

PIB

There is more.....

RDS sheets

Resonant diffuse scatter

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Wed. Nov 6, 2019

Resonant diffuse scatter

samples with designed roughness:

Line edge vs. line width roughness

Diffuse scatter provides information on structure => mathematics need to be developed

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin Wed. Nov 6, 2019

Thank you for your attention

Funded by the Horizon 2020 Framework Programme of the European Union