

DESIGN, DEVELOPMENT AND EVALUATION OF HOLOGRAPHIC MASKS FOR PROXIMITY LITHOGRAPHY WITH EUV RADIATION

NOVEMBER 6TH 2019 I LARISSA JUSCHKIN

Valerie Deuter, Maciej Grochowicz, Sascha Brose, Jan Biller, Detlev Grützmacher

RWTH Aachen University and Forschungszentrum Jülich

COMPUTATIONAL PROXIMITY LITHOGRAPHY

- Investigation of potential of EUV proximity lithography for producing arbitrary nano-scale pattern
 - Development of mask design (hologram)
 - Fabrication techniques
 - EUV lithography

MOTIVATION

Why interference / proximity lithography?

- Self-healing
 - Small defects on mask do not influence exposure result
- Lens-less
 - All materials are strongly absorbing EUV radiation → no refractive lenses
 - Simple setup
- Mask-wafer gap
 - Lower risk of mask/wafer damage

Why computational lithography?

- Optical proximity correction
 - Higher image contrast and resolution
- Designing of phase-shifting masks
 - More efficient masks

Mitglied der Helmholtz-Gemeinschaft

10. November 2019

3

Image: https://de.wikipedia.org/wiki/Optical_proximity_correction

EUV PROXIMITY LITHOGRAPHY

- Small gap between mask and wafer for patterning
- Complex geometries when in Fresnel diffraction mode (N_F~1), e.g. for separate µm-scale features
 → mask layout ≠ resist pattern
- High resolution with specially designed masks
- Arbitrary structures
 - → Negligible electron blur
 → No charging effects

compared to eBeam

- Simple optical system
- → Mask design is crucial

COMPUTATIONAL PROXIMITY LITHOGRAPHY

- Fabrication of µm-scale complicated / arbitrary structures without lens-based imaging systems
- Fresnel regime
- Elbow structure:
 - Prototype for lithography structures
 - High and low intensity regions
 - Sharp lines
 - Different line lengths

5

wafer

TYPES OF TRANSMISSION MASKS

Amplitude mask:

Absorber material: Ni, Cr, TaN

Phase mask:

Phase shifting materials: polymers, Zr, Mo, MoN, Nb

All materials are strongly absorbing EUV

- → Attenuated phase shifting mask
- → Phase shift of approx. π
- → Better diffraction efficiency of phase mask
- → Fabrication of phase mask: no structure transfer needed with resist polymers
- → Phase shifting material: eBeam resist CSAR62

Mitglied der Helmholtz-Gemeinschaft

10. November 2019 6

C. Pierrat et al., Appl. Opt. 34 (22), 4923-4928 (1995)

HOLOGRAPHIC MASK – COMPUTATIONAL PROXIMITY LITHOGRAPHY

Adapted Gerchberg-Saxton algorithm

Mitglied der Helmholtz-Gemeinschaft http://cdn.iopscience.com/ Forschungszentrum

HOLOGRAPHIC MASK – COMPUTATIONAL PROXIMITY LITHOGRAPHY

Mitglied der Helmholtz-Gemeinschaft

Forschungszentrum

HOLOGRAPHIC MASK – LAYOUT AND FABRICATION

CSAR resist

SiNx-membrane

- 2 levels: CSAR resist / no resist
- No absorber \rightarrow easier fabrication •
- Design for one mask-wafer distance
- Small depth of focus

1-4) CSAR coating

5-6) EBL / development

CSAR thickness	337 nm
Wavelength	13.5 nm
Mask-wafer distance	300 µm
Pixel size	50 nm

bar thickness (a) Δ 50 nm a = 250 nmp = 250 nm100 µm

> Black: phase shifting material White: eBeam writing

period (p) ∆ 50 nm

MASK FABRICATION

simulated mask layout

pixel size 50 nm

SEM image 3 nm Ir on CSAR

Mitglied der Helmholtz-Gemeinschaft

MASK FABRICATION – AFM

AFM Scans @ PSI

.89 nm .50	Ellipsometer [nm]	AFM [nm]
.00	297	108
0	418	137

Resist thickness measurement:

- Goal: 330 nm
- Ellipsometer: outside structures
- AFM: •
 - inside structures (PSI)
- **FIB** cuts •

 \rightarrow check difference

MASK FABRICATION – FIB

Maks	Ellipsometer [nm]	FIB [nm]
F13	375	80

→ Resist is not fully developed

MASK FABRICATION – RESIST THICKNESS

Maks	Ellipsometer [nm]	AFM / FIB [nm]
F8	297	108
F12	418	137
F13	375	80 (FIB)

- AFM and FIB results are comparable
- \rightarrow The resist is not fully developed
- → CSAR thickness too thin compared to design values
- \rightarrow Different thicknesses within the mask

EXPOSURES AT PSI

- Synchrotron
- λ = 13.5 nm
- Resist: HSQ
 - Development: 25% TMAH
- Mask-wafer distance: 300 µm

Investigated parameters:

- eBeam dose on mask
- EUV dose
- Resist thickness on mask
- EUV resist

Mask wafer distance is critical but hard to control at this setup

BEST EXPOSURE RESULTS – AFM SCANS

 \rightarrow Better results for mask with thicker CSAR resist

Mask-wafer distance: 289 μm

 \rightarrow Closer to designed thickness and corresponding phase shift

EXPOSURES AT ILT / RWTH-TOS

- Plasma source
- Limited coherence length (10 µm)
- $\lambda = 13.5 \text{ nm}$
- Resist: SEVR (CAR resist) •
 - Development: TMAH
- Mask-wafer distance: Scan 100-500 µm

Investigated parameters

- eBeam dose on mask
- EUV dose
- Mask-wafer distance

16

DOSE SCAN

→best exposure result for EUV dose 14 mJ/cm²

Mitglied der Helmholtz-Gemeinschaft

Mitglied der Helmholtz-Gemeinschaft

10. November 2019

18

SIMULATIONS

- Simulation of exposure results
- Ideal mask thickness 330 nm

Intensity at 100 um

[arb. u.]

Intensity at 230 um

DIFFERENT ELBOWS

Mask-wafer distance 324 μm

PLASMA SOURCE VS. SYNCHROTRON

plasma source ILT

synchrotron PSI

→ Similar exposure results

SUMMARY

- Successful mask design and fabrication
- CSAR resist is suitable as phase shifting material
 - Optical properties as expected
 - Fabrication of needed thickness is challenging
- Exposures at PSI
 - Successful exposures
 - Difficult mask-wafer distance control
- Exposures at ILT / RWTH-TOS
 - Successful exposures
 - Distance scan matches simulations
- Similar results for PSI and ILT exposures
- The algorithm worked

Thank you for your attention!*

Jan

Maciek

ACKNOWLEDGEMENTS

EP-EUV, RWTH-Aachen, Chair for Experimental Physics of EUV

Valerie Deuter, Maciej Grochowicz, Jan Biller, Hyun-su Kim, Mikheil Mebonia, Florian Melsheimer, Anagha Kamath, Daniel Wilson

TOS, RWTH-Aachen, Chair for Technology of Optical Systems

Sascha Brose, Bernhard Lüttgenau, Serhiy Danylyuk

Peter Grünberg Institute, FZJ

Detlev Grützmacher

Helmholtz Nano Facility, FZJ

Stefan Trellenkamp, Elmar Neumann, HNF-staff

PSI, NFFA Program

Yasin Ekinci, Dimitrios Kazazis, Michaela Vockenhuber

Outlook – open research questions

What are the resolution limits?

Can we generate nm-sized structures without having them on the mask? Can we de-magnify the structures using appropriate illumination, e.g. in the Fresnel diffraction regime with a converging beam?

For hologram design, because of the thresholding nature of lithography, the solution is not unique, offering many advantages. But how to find optimal solution regarding mask manufacturability and pattern quality after lithography and structure transfer steps?

What are illumination and source requirements regarding spectral radiance and coherence? How to utilize "expensive" (difficult to generate) EUV photons in an efficient way?

At the mask technology side, can we create multi-phase-level holograms instead of binary masks used in lithography? How this can be achieved?

