

Calibrated broadband spectroscopy using transmission gratings in the EUV to DUV wavelengths

M. Bayraktar^{1*}, H.M.J. Bastiaens², Z. Bouza³, O. Versolato³, and F. Bijkerk¹

¹Industrial Focus Group XUV Optics, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands ²Laser Physics and Nonlinear Optics, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands ³Advanced Research Center for Nanolithography, Amsterdam, The Netherlands *m.bayraktar@utwente.nl

Motivation

- EUVL source plasma emission spectrum is relevant for scanner performance
 - In-band EUV range (13.5 nm ±1%) is needed for ensuring optimal plasma emission and it influences imaging performance via coating angular and spectral dependencies
 - DUV range (130-400 nm) can cause parasitic heating of optical components and contrast loss in photoresist patterning
- > Spectral characterization using transmission spectrometer was

shown to provide insight about the mentioned aspects The spectrometer can be calibrated for accurate measurements

Compact High-Resolution Spectrometer for VIS, DUV, EUV

- Grating matrix with free-standing transmission gratings
 Lines densities from 500 lines/mm up to 10.000 lines/mm
- > Diffraction efficiency in the first order $\approx 10\%$
- Flat diffraction efficiency curve from 10 nm to 100 nm
- Reproducible fabrication of gratings by proprietary NIL process

➤ High spectral resolution: 0.1 nm at 13.5 nm wavelength [2]

Grating Structure and Model

- Broad spectral coverage: 5 to 800 nm
- Fast switching between high resolution or wide spectrum
- Flat-field spectrum and higher order suppression by filters

Easy alignment:

- Computer-controlled positioning of components
- GUI to control the optics and record/process spectrum

- > SEM images reveal that the structure has strong periodicity
- > Cross-sectional images show that the 10.000 lines/mm grating has tapering in the Si_3N_4 layer
- The grating has been modeled by taking into account the crosssection of the gratings

	t _{si3N4} (nm)	t _{Au} + t _{Cr} (nm)	w _o (nm)	w _t (nm)	w ₁ (nm)	w ₂ (nm)
SEM (µ)	193.5	36.63	47.96	37.33	52.48	
SEM (o)	8.30	4.79	4.21	6.27	6.99	
Model	196.9	21.28+4	48.98	19.42	72.53	78.88

Thicknesses from SEM and model closely match, whereas widths shown variations that can be due to edge roughness

Conclusions and outlook

- Developed spectrometer was shown to measure EUV, DUV and VIS spectra at nominal operation conditions of EUVL sources
- The spectrometer can be straightforwardly calibrated using synchrotron sources such as in PTB in broad wavelength range
- Benefitting from SEM cross-sectional images, calibration data can be closely fitted with RCWA modeling
- > Plans: Including edge roughness for a better match in widths

Modeling 1.000 lines/mm grating for calculating the polarization dependence of the diffraction efficiencies

[1] M. Bayraktar, et.al. *NEVAC Blad*, vol. **54**, no. 1, pp. 14-19 (2016).
[2] S.J. Goh, et.al. *Opt. Express.*, vol. **23**, no. 4, pp. 4421-4434 (2015).
[3] I. Fomenkov, *EUV Source Workshop*, Dublin, Ireland (2017).

This work has been enabled by the FOM Valorization Prize 2011, awarded to Fred Bijkerk and NanoNextNL Valorization Grant awarded to Muharrem Bayraktar in 2015.

