

Artifact-free XUV Coherence Tomography with quantitative material sensitivity

S. Fuchs^{1,2}, M. Wünsche^{1,2}, Felix Wiesner^{1,2}, J. J. Abel^{1,2}, Jan Nathanael^{1,2}, Julius Reinhard^{1,2}, S. Skruszewicz^{1,2}, C. Rödel^{1,2}, G. G. Paulus^{1,2}

¹Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, Germany, ²Helmholtz Institute Jena, Germany

MOTIVATION

- XUV wavelengths enable nanoscale resolution
- High Harmonic Generation provides broad bandwidth XUV radiation on a lab-scale
- XUV Coherence Tomograohy (XCT), which is an extension on Optical Coherence Tomography (OCT) [1] into the XUV uses full photon flux to achieve nanometer depth resolution

XUV COHERENCE TOMOGRAPHY

- A HHG source based on an OPA has been developed for XCT [2]
- XCT enables nondestructive cross-sectional imaging
- Broadband spectral information yields material sensitive contrast

Broadband radiation in the XUV enables nanoscale axial resoltion (11nm within 12-42nm bandwidth)

• Depth structure is encoded in modulations of the reflected spectrum (Fourier-Domain XCT)

DEPTH RECONSTRUCTION

- of the setup
- (includes autocorrelation artifacts) [4]

ARTIFACT MITIGATION

- Real structure information is
- 1D phase retrieval usually is highly unstable
- Novel phase retrieval algorithm [5]

MATERIAL SENSITIVITY

OUTLOOK

- Improve the lateral resolution by using high-NA optics
- Combine XCT with lensless imaging techniques like CDI
- Add ultrafast time resolution in a pump-probe scheme

 Transfer laser-based XCT into the water window to increase axial resolution even further and enable **better material contrast**

HELMHOLTZ **RESEARCH FOR GRAND CHALLENGES**

Helmholtz Institute Jena

[1] Huang et al.: Optical coherence tomography, Science, 1991

[2] Wünsche et al.: Quasi-supercontinuum source in the extreme ultraviolet using multiple frequency combs from high-harmonic generation, Optics Express, 2017 [3] Wünsche et al.: A high resolution extreme ultraviolet spectrometer system optimized for harmonic spectroscopy and XUV beam analysis, Review of Scientific **Instruments**, 2019

[4] Fuchs et al.: Nanometer resolution optical coherence tomography using broad bandwidth XUV and sof x-ray radiation, Scientific Reports, 2016 [5] Fuchs et al.: Optical coherence tomography with nanoscale axial resolution using a laser-driven high-harmonic source, Optica, 2017

WEBADRESS www.ioq.uni-jena.de **Contact:** silvio.fuchs@uni-jena.de