Circularly Polarized High-Harmonics – From Symmetries to Applications

Dr. Ofer Kfir

University of Göttingen, Germany

EUV sources conference, ARCNL, Amsterdam

Magnetic domains, first image with HH

Kfir, Zayko, et al., Science Advances, eaao4641 (2017)

Outline

High harmonic generation

- Circularly polarized high harmonics.
- In-line apparatus simple!
- Imaging of magnetic domains.
- Summary

High harmonics generation - Fundamentals

Ofer Kfir, ARCNL, Nov 6th 2019

Kulander, K. C., *et al*. Laser Physics **3**, 359 (1993)

HHG - a unique light source

Control

- Spectrum \rightarrow Extreme-UV and soft-X-rays
 - \rightarrow broad / single harmonic
- Coherence (laser-like) \rightarrow Lensless imaging
- Temporal → Attosecond science (1 atto=10⁻¹⁸ sec)
- **Polarization?** General mindset: polarization is ~ linear

Control polarization / spin!

Fleischer, Kfir, et al., Nature Photonics Phot. Kfir et al., Nature Photonics 9, (2015).

Polarization?

For chiral sensitivity the ultimate polarization is circular.

Chiral molecules

Magnetic features

Spin textures

Wang, Hsieh, Gedik et al., PRL 107,207602 (2011)

Ellipticity effects in HHG

Mindset: polarization of (bright) high harmonics is ~linear

Ellipticity diminishes HHG efficiency since the electron misses the atom

Higher orders harmonics are more sensitive to the laser ellipticity

Ofer Kfir, ARCNL, Nov 6th 2019

Aton

M. Möller *et al.* PRA 86, 011401 (2012) Weihe, F.A., *et al.*, PRA **51**, R3433 (1995)

Quarter-wave plate

Outline

High harmonic generation

Circularly polarized high harmonics.

- In-line apparatus simple!
- Imaging of magnetic domains.

Circularly polarized harmonics

- Driven by circularly polarized
 counter rotating 800 nm and 400 nm fields
- The Bi-chromatic field has Lissajous curve of a 3-fold flower
- The system has a dynamical symmetry delays of $T/3 \rightarrow$ rotation of 120°

= **80**0 *nm*

Circularly polarized harmonics

- Efficiency can be as high as for linearly polarized high harmonics.
- Electron trajectories return to origin for recollision.

Fleischer, Kfir, et al., Nature Photonics 8, 543 (2014).

Ofer Kfir, ARCNL, Nov 6th 2019

Circularly polarized harmonics

Fleischer, Kfir, et al., Nature Photonics 8, 543 (2014).

Outline

High harmonic generation

Circularly polarized high harmonics.

In-line apparatus – simple!

Imaging of magnetic domains.

Summary

Mach-Zehnder Less Threefold Optical Virginia spiderwort

Large

Unstable

- Polarization sensitive elements
- Difficult alignment and operation

Inline generation of circularly polarized HHG

- Plug and play no alignment
- Portable
- Stable
- Ensures <u>purely polarized</u> pump
- Controllable helicity

Ofer Kfir, ARCNL, Nov 6th 2019

Kfir et al., App. Phys. Lett. 108, 211106 (2016)

MAZEL-TOV - demonstration

Kfir et al., App. Phys. Lett. 108, 211106 (2016)

Advantages:

- Plug and play no alignment
- Portable
- Stable
- Ensures <u>purely polarized</u> pump
- No polarizing sensitive elements

Outline

High harmonic generation

Circularly polarized high harmonics.

In-line apparatus – simple!

Imaging of magnetic domains.

Lensless imaging with coherent radiation

Fourier transform holography:

- Wave exiting a narrow hole interferes with the sample's far field
- One-step Fourier transform reconstructs the image \rightarrow Resolution is the physical size of the hole.
- High-resolution information (smaller than the hole size) are not used.
- Coherent diffractive imaging:
 - Capable of full phase retrieval of the far-field \rightarrow single pixel resolution of the image.
 - Requires some knowledge on the sample (i.e. finite support).

Imaging experiment

Apparatus for magnetic imaging

SEM image, top view

19 nm px size

HHG Imaging apparatus

grating

HHG

Laser (800nm)

MA7FI

Imaging chamber

Ofer Kfir, ARCNL, Nov 6th 2019

Imaging chamber

<u>Question</u>:

So, how come it took so long to image magnetic texture with HHG?

My answer – very challenging, Magneto-optical scattering is very weak, scatters 1 of 10⁶ incident photons.

Contrast enhancement mechanism

 Circular dichroism isolates magnetic signal from non-magnetic background.

Dichroic imaging eliminates wave effects of the probe.

 Interference with a strong auxiliary wave enhances the weak signal (Heterodyning). (Shintake, PRE 78 041906 (2008))

An order of magnitude enhancement

Enlarged ref. holes

Small ref. holes

Contibutours

Prof. Oren Cohen

Dr. Avner Fleischer (Tel-Aviv) Pavel Sidorenko (Cornell) **Oren Lahav** Eliyahu Bordo Gil Ilan Haham

Prof. Margaret Murnane Prof. Henry Kapteyn

Dr. Patrik Grychtol (EU XFEL) Dr. Tenio Popmintchev (San Diego) Emrah Turgut (Oklahoma) Dmitry Zusin Ronny Knut (Uppsala) **Dimitar Popmintchev** Dan Hickstein (NIST) Christopher Mancuso Tingting Fan Cong Chen Dr. Zhensheng Tao Dr. Carlos Hernández-García (Salamanca)

Prof. Claus Ropers Dr. Sergey Zayko Dr. Sascha Schafer Dr. Murat Sivis Marcel Möller Prof. Stefan Mathias Dr. Daniel Steil Christina Nolte Prof. Manfred Albrecht (Augsburg) Phani Arekapudi (Chemnitz) Birgit Hebler (Augsburg)

Summary

High harmonics are a compact source of femtosecond pulses at the extreme-UV

Controllable polarization (L + R)) allows for coherent access to chiral media

- Circular polarization is protected by symmetry putting elegant physics into practical use.
- Magnetic imaging with HHG reaches sub-wavelength resolution, at a large field-of-view.

Future: New possibilities (temporal, chiral, multi-spectral) are now open !

Georg-August Universität Göttingen

...Thanks for your attention

Holographic magnetic imaging

- Hologram retrieves the small angle scattering.
- Includes much more information than the holographic retrieval.

D.R. Luke, Inverse Problems 21 37 (2005)

We have:

- Far-field **amplitudes**
- Knowledge of the support

We need:

- Far-field **phase** would yield
- the real-space complex field
- \rightarrow image reconstruction

Magnetic contrast

Ratio of Left/Right images

Iterative image reconstruction

Coherent enhancement

Example:

Near-sample holes for additional enhancement field allow to recover diffraction regions for sub-wavelength magnetic imaging.

20 µm⁻¹ (pixel size 25 nm)

Polarization cleaning by the Calcites

