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High-harmonic generation (HHG) is a technique that enables broadband, ultrafast, and highly coherent extreme ultraviolet sources. However, 
the conversion efficiency of the process is low, but most applications of HHG require high-brightness sources. In addition, the HHG pulses have 
a double-Gaussian beam profile that gives rise to chromatic aberrations, which are rooted in the quantum-mechanical nature of the generation 
mechanism. By using both 800 nm and 400 nm femtosecond pulses for the generation process, we can manipulate the attosecond electron 
dynamics of the HHG process, which impacts the phase front of the generated pulses. We have shown by an extensive parameter study that 
the relative polarization, the ratio between and the phase of the two fields can be used to improve the beam profile by suppressing the tails of 
the spatial profile, while increasing the yield. Our result pave the way 
towards high-brightness HHG sources with improved beam profiles.
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Fig. 4 – a) The harmonic spectrum for a relative phase delay of 0 rad. b) The harmonic
spectrum for a relative phase of 0.5 π rad.
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Fig. 1 – Three step model of HHG. 1) Tunneling of
the electron out of the atomic potential. 2)
Acceleration of the electron in the electric field of
the laser, therefore gaining kinetic energy. 3)
Recombination of the electron with the parent ion.

Fig. 2 – The ionization time determines the
trajectory of the electron and the energy of
the emitted photon (different colors). There
are two trajectories that contribute to each
energy: Long and short.
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𝜙𝜙𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙𝜙𝜙𝑖𝑖,𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 = 𝑞𝑞𝜓𝜓𝑓𝑓 + 𝜑𝜑𝑖𝑖,𝑞𝑞
𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡𝑙𝑙𝑑𝑑

𝜑𝜑𝑖𝑖,𝑞𝑞
𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡𝑙𝑙𝑑𝑑 = 𝛼𝛼𝑖𝑖𝐼𝐼(𝑟𝑟)

𝛼𝛼𝑠𝑠 ≪ 𝛼𝛼𝑙𝑙

q = harmonic order
𝑖𝑖 = 𝑠𝑠, 𝑙𝑙;

Fig. 3 – The divergence of 
the HHG is directly related 
to the phase front 
curvature of the beam, 
which is related to the 
excursion of the electron
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Fig. 5 – a) The normalized beam profile of the harmonic spectrum, showing suppression of
signal in the wings for a relative phase of 0.5 π. b) The beam profile of the harmonic
spectrum, showing an increased yield for a relative phase of 0.5 π. For both profiles the
gas jet was positioned before the focus and the relative intensity of the 400 nm was 25%.
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• Adding a perpendicular 400nm pulse to the generation process enables divergence control, while at the same 
time increasing the photon yield.

• Trajectory selection enables divergence control, while manipulation of the instantaneous ionization rate 
influences the yield.

• Easy to implement optics. 
• Enables micro-focussing of HHG: interesting for nonlinear XUV spectroscopy, imaging and diffraction metrology 

applications.
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Fig. 6 – Divergence
and yield comparison
for a) gas jet after the
focus and b) 11%
relative intensity of
400 nm compared to
800 nm.
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