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Table 1: Simulation parameters

Ion distribution output
• Energy- and angle-resolved ion distributions
• Based on mass density and velocity field
• Records number of particles leaving the mesh

Assumptions
• Non-refractive model 
• Not charge-resolved
• Plasma as quasi-neutral hot gas
• Single-fluid approximation
• No surface tension

RALEF-2D
• Radiation Arbitrary Lagrangian-Eulerian Fluid dynamics in 

2 Dimensions [3]
• Includes heat conduction and radiation transport

Faraday cup
• Time-of-flight (TOF) ion spectrometer:

𝐸 = 1
2
𝑚  𝐿𝑇𝑂𝐹 𝑇𝑂𝐹 2

•  𝑑𝑄(𝐸) 𝑑𝐸 is derived from ion current 𝐼 𝐸

Electrostatic analyzer (ESA)
• Ion energy filter and TOF spectrometer :

𝐸𝑍 𝑈ESA =
𝑒𝑍𝑈ESA
2𝑙𝑛  𝑟1 𝑟2

• Peak finding in 𝑉𝐶𝐸𝑀 𝑡 gives TOF and 𝑍 for each ion
• 𝑍 resolved up to 𝑍 = 8
•  𝑑N𝑍(𝐸) 𝑑𝐸 obtained
•  𝑍  𝑑𝑄𝑍(𝐸) 𝑑𝐸 =  𝑍 𝑍 ×  𝑑N𝑍(𝐸) 𝑑𝐸  ≈ 𝑑𝑄 𝐸 𝑑𝐸

 Similar trends in measured and simulated dN/dE(E) 
 Sharp cutoff at high energy
 Linear flat trend at low energy
 Similar increase of cutoff position with increasing laser energy

x Shoulder smoothness not reproduced by the simulation
x Overestimation of plasma temperature in RALEF-2D (?)

Figure 2: State-charge-resolved tin 
ion energy distribution as 
measured by the ESA; colored 
solid lines account for the spectra 
of individual charge-states 

 𝑑𝑄𝑍(𝐸) 𝑑𝐸 and the black solid 
line is their sum  𝑑𝑄(𝐸) 𝑑𝐸; in 
this experiment a 30 µm tin 
droplet was hit by a 300 mJ, 7 ns 
FWHM laser pulse from a Nd:YAG
laser (1064 nm) in ultra-high 
vacuum.

Figure 5: Ion energy distribution at 60° with respect to the laser
axis as produced by an experiment (using the ESA) and a RALEF-
2D simulation. Amplitudes of the experimental spectra are
normalized at the high-energy shoulder with a common factor to
fit the simulation.

Figure 1: Plasma ion detection setup with one Faraday 
cup and an electrostatic analyzer.
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Ion energy distributions of Sn laser-produced plasmas

Figure 3: Crude version of 
computational mesh
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New-generation nanolithography machines employ extreme ultraviolet (EUV) light to enable
patterning of nm-scale features. EUV light (13.5 nm ± 1%) is produced efficiently by de-excitation
of highly charged tin ions in a hot and dense laser-produced plasma (LPP). However plasma
expansion into a high-vacuum nanolithography machine leads to contamination of its main EUV
collector mirror. [1]

The following study aims to provide an understanding of tin plasma expansion and the possible
mitigation of its most damaging components. Hereafter we present a preliminary comparison
between ion energy distributions measured experimentally and simulated with the radiation-
hydrodynamics code RALEF-2D.

Droplet diameter 30 µm

Spatial laser profile Gaussian 105 µm FWHM

Temporal laser profile Gaussian 7 ns FWHM

Laser pulse energy Ranging from 3 to 300 mJ

Laser wavelength 1064 nm

Radius mesh boundary 1 mm

Figure 4: Mass density 
(g/cm3, logarithmic 
scale) and velocity 
field 10 ns after the 
start of the simulation; 
the red arrow 
indicates laser 
direction.
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