Fundamental Structure and Interactions of Ionic Tin

Ronnie Hoekstra

ADVANCED RESEARCH CENTER FOR NANOLITHOGRAPHY

progress on atomic physics aspects

EUV line identifications in Sn¹³⁺, Sn¹⁴⁺, and Sn¹⁵⁺ ions

13.5-nm EUV light: the double magic of Sn ions

Optical depth as a single, pertinent scaling-law parameter

Sn ion scattering on Mo and Ru: experiments versus SRIM

charge exchange cross sections for ions traversing H₂ gas

the local collaborators

Alex Bayerle, Lars Behnke, Zoi Bouza, Laurens van Buuren, Mart Johan Deuzeman, Diko Hemminga, Harry Jonkman, Roeland Kamp, Sybren Koeleman, Dmitry Kurilovich, Bo Liu, Randy Meijer, Walewein Noordam, Lucas Poirier, Subam Rai, Joris Scheers, Ruben Schupp, John Sheil, Otte Tjepkema, Francesco Torretti, Joël Zwart, Ronnie Hoekstra, Wim Ubachs, Oscar Versolato

EUV emisssion

Wavelength (nm)

atomic origins of EUV light: Sn¹⁰⁺

A. Windberger et al., Phys. Rev. A 94, 012506 (2016); F. Torretti et al, Phys. Rev. A 95, 042503 (2017)

In-EBIT spectroscopy

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

EBIT group: J. Crespo López-Urrutia And coworkers

electron impact excitation of trapped Sn ions in charge states 7 - 20+

theory

ISAN Troitsk A. Ryabtsev

School of Chemistry E. Eliav and U. Kaldor

Van Swinderen Institute A. Borschevsky

School of Physics J. Berengut and E. Kahl

the tin serendipidity

wavelength (nm)

ARCNL

charge state and intensity line-outs

"13+" "14+1"15+" "16+" 13.013.5 14.0 Wavelength (nm) 1.010 +0.8 11 +12 +Normalized intensity 13 +0.6 14 +15 +16 -0.4 17 +18 +0.2 0.0 . 250 300 350 400 450 500 550

Uncorrected electron beam energy (eV)

ARCNL

Sn¹⁵⁺ and Sn¹⁶⁺ are relevant for in-band EUV emission single spectra obtained from line-outs BUT: spectra are a mix of charge states

J. Scheers et al, under review

charge state resolved spectral reconstruction **MARCNL**

charge state resolved spectra

J. Scheers et al, under review

the double magic structure of tin ions

next talk by James Colgan

F. Torretti et al, under review

Line shape and opacity

Ruben Schupp et al., Appl. Phys. Lett. 115, 124101 (2019)

Relative opacity scaling of Nd: YAG LPP

/ zernike institute for advanced materials

university of groningen

ZERNIKELEIF facility: low-energy, mass and charge state selected A^{q+} ion beam facility with a full suite of auxiliary equipment

14 keV Sn²⁺ - Mo: benchmarking SRIM 👹 WARCNL

original experiment: 14 keV Sn ²⁺ - Mo		
incoming charge state	Sn ^{1+ - 4+}	as 14 keV Sn ²⁺
energy	5 – 30 keV	as 14 keV Sn ²⁺
ion species	He ¹⁺ , Ne ¹⁺	no difference between exp. and SRIM
	Xe ^{1+ - 2+}	as 14 keV Sn ²⁺
	Kr ²⁺	larger difference than 14 keV Sn ²⁺
outgoing charge state	neutrals	TOF: Single-Collision peak absent
target	Ru	larger difference than 14 keV Sn ²⁺

SRIM heavy-heavy, slow interactions to be revisited?

scattering potentials

next step: SRIM \rightarrow SDTrimSP-2D

7 keV Kr+ on Cu

Single-collision peak strength

Scattering Angle (Degree)

ion – H_2 gas interactions: H^+/H_2^+

Very first ToF spectrum of H⁺/H₂⁺

Extraction field

ready for Sn ion experiments

ARCNL

conclusions

Progress on unraveling fundamental atomic physics aspects		
ΤΟΡΙϹ	PROGRESS	
atomic structure line identifications	new method "charge state specific spectra" EUV line identifications in Sn ¹³⁺⁻¹⁵⁺ ions	
13.5-nm in band EUV light	driven by the double magic structure of Sn ions	
line shapes and opacity	relative optical depth: a single, pertinent scaling-law parameter	
Sn ion – solid interactions	missing Single Collision peak SRIM description flaw assess potential effects via Kr – Cu	
Sn ions traversing H ₂ gas	set up commissioned and operational for charge exchange and H ₂ fragmentation	