

XUV Spectroscopy of Strontium Laser Produced Plasmas

T. Miyazaki, G. O'Sullivan and P. Dunne

School of Physics, University College Dublin, Belfield, Dublin 4, Ireland

NIST Atomic Spectra Database - Line Holdings

For instance, Sr ions 8+ to 25+, 2 to 8 nm spectra are largely missing

Published line spectra of Sr ions from NIST at 30/04/2019

Sp. Name.	lon Charge	El. name	lsoel. Seq.	Ground Shells ^a
Sr XI	+10	Strontium	Ni	[Ar]3 <i>d</i> ¹⁰
Sr XII	+11	Strontium	Co	[Ar]3 <i>d</i> ⁹
Sr XIII	+12	Strontium	Fe	[Ar]3 <i>d</i> ⁶
Sr XIV	+13	Strontium	Mn	[Ar]3 <i>d</i> 7
Sr XV	+14	Strontium	Cr	[Ar]306
Sr XVI	+15	Strontium	V	hells
Sr XVII	+16	Strontium	h	-5110
Sr XVIII	+17	01	SUP	arj30 ⁶
Sr XIX		8 21		[Ar]3 <i>d</i> ²
Sr XY	30	Laun	к	[Ar]3 <i>d</i>
one	-20	Strontium	Ar	[Ne]3 <i>s</i> ² 3 <i>p</i> ⁶
UP	+21	Strontium	CI	[Ne]3 <i>s</i> ²3 <i>p</i> ⁵
or XXIII	+22	Strontium	S	[Ne]3 <i>s</i> ² 3 <i>p</i> ⁴
Sr XXIV	+23	Strontium	Р	[Ne]3 <i>s</i> ² 3 <i>p</i> ³
Sr XXV	+24	Strontium	Si	[Ne]3 <i>s</i> ² 3 <i>p</i> ²
Sr XXVI	+25	Strontium	AI	[Ne]3 <i>s</i> ²3 <i>p</i>

Reference : <u>https://physics.nist.gov/cgi-bin/ASD/ie.pl</u>

Some previous studies 4^{th} row: Z = 39(Y) - 42(Mo)

IOP PUBLISHING

J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 245004 (6pp)

JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

doi:10.1088/0953-4075/45/24/245004

XUV spectra of laser-produced zirconium plasmas

Bowen Li¹, Takeshi Higashiguchi², Takamitsu Otsuka², Weihua Jiang³, Akira Endo⁴, Padraig Dunne¹ and Gerry O'Sullivan¹

APPLIED PHYSICS LETTERS 109, 194103 (2016)

Soft X-ray emission from molybdenum plasmas generated by dual laser pulses

Ragava Lokasani,^{1,2,a)} Goki Arai,³ Yoshiki Kondo,³ Hiroyuki Hara,³ Thanh-Hung Dinh,^{3,4} Takeo Ejima,⁵ Tadashi Hatano,⁵ Weihua Jiang,⁶ Tetsuya Makimura,⁷ Bowen Li,⁸ Padraig Dunne,² Gerry O'Sullivan,² Takeshi Higashiguchi,^{3,9,b)} and Jiri Limpouch¹

IOP Publishing

J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 245009 (12pp)

Journal of Physics B: Atomic, Molecular and Optical Physics

doi:10.1088/0953-4075/48/24/245009

XUV spectra of 2nd transition row elements: identification of 3d–4p and 3d–4f transition arrays

Ragava Lokasani^{1,2}, Elaine Long², Oisin Maguire², Paul Sheridan², Patrick Hayden², Fergal O'Reilly², Padraig Dunne², Emma Sokell², Akira Endo³, Jiri Limpouch¹ and Gerry O'Sullivan²

High possibility of resonant transitions from open 3dsub-shells of Sr ions $\xrightarrow{\sim} 3d^{n-1}4p^{1}$

Reference : E. Alexander, *et. al.* 1971 *J. Opt.Soc. Am.* **61** 4 508-514 R. Lokasani, *et. al.* 2015 *J. Phys. B: At. Mol. Opt. Phys.* **48** 245009 B. Li *et. al.* 2012 *J. Phys. B: At. Mol. Opt. Phys.* **43** 245004

Iso electronic sequence of published mean unresolved transition array (UTA) peak

Experimental apparatus of LPP

Typical LPP strontium spectra

$3d^{n} - 3d^{n-1}4p$, $- 3d^{n-1}4f$ resonant transitions (2.5 to 4.5 nm region)

Peaks **a** to **f** are blended resonant and satellite lines

Resonant and satellite lines in the 4.0 to 9.0 nm region form separate peaks

(10/15)

Future work: Study the discrepancy between predictions of CR model and experimental populations

LYC	HK	cod	e (NIS	ST)
Physical Mee Physical	surement Laboratory Reference Data	Net	onel Institute of and Technology	
NIST Stan	dard Reference Database	160 Last Update to Da	ata Content: August 2018 DOI: https	s://dx.doi.org/10.18434/T4WS3G
	FLYCHK	To	tal number of registered FLY	CHK users: 1114
	FLYCHK provides a generate atomic level charge state distribut mid-Z elements under conditions.	capability to populations and tions for low-Z to r NLTE	User ID: Password:	
			Lo	ig In
	Reference: FLYCHK: Ge elements, HK. Chung, M. (2005)	eneralized population kin H. Chen, W.L. Morgan,	etics and spectral model for rapid spectros Yu. Ralchenko, and R.W. Lee, High Ener	scopic analysis for all rgy Density Physics v.1, p.3
	Manual: <u>1995(PDF)</u>	2008(PDF)	README EXAMPLES Q&A	Contact us
	LUI CIIN III IAUA	The Case Cost Por unit		(userid request etc.)
Ra	te our products and service	ces		

Reference : https://nlte.nist.gov/FLY/

Radiative Deflagration model & Collisional Radiative (CR) model

 $T \text{ (eV)} \approx 5.2 \times 10^{-6} A^{1/5} (\lambda^2 \Phi^{3/5})$

- T : Plasma temperature
- A : Atomic number
- λ : Laser wavelength
- Φ : Laser power density

Influenced by the radius of plasma?

LPP with fine control laser power density by 5.5 ns, 170 ps & 20 ps Nd:YAG lasers

Latest:

AUTHOR SUBMITTED MANUSCRIPT - JPHYSB-105479.R1

Soft x-ray emission from laser-produced strontium ions

Takanori Miyazaki, Gerry O'Sullivan and Padraig Dunne

School of Physics, University College Dublin, Belfield, Dublin 4, Ireland

E-mail: takanori.miyazaki@ucdconnect.ie

May 2019

Abstract. Soft x-ray spectra, in the range from 2 nm to 9 nm, were recorded from strontium plasmas formed by pulses from 20 ps, 170 ps and 5.5 ns Nd:YAG lasers operating at the fundamental wavelength of 1064 nm. Features due to 3d - 4p and 3d - 4f transitions were identified by comparison with spectra from adjacent ions and atomic structure calculations with both the Cowan code and the Flexible Atomic Code (FAC). As in the spectra of ions of other elements in the fifth row of the periodic table, resonant lines $3d^n - 3d^{n-1}4p^1$, $3d^n - 3d^{n-1}4f^1$ and satellite lines $3d^{n-1}4s^1 - 3d^{n-2}4s^14p^1$, $3d^{n-1}4s^1 - 3d^{n-2}4s^14p^1$, $3d^{n-1}4s^1 - 3d^{n-2}4s^14p^1$, emitted by 10+ to 19+ ions. These $\Delta n = 1$ transitions provide a range of narrow band emission features which may match to specific multi layer combinations for reflective

Reference

- 1. D. Attwood, "SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION Second edition", Cambridge University Press, P2, Fig.1.1 (2016).
- 2. NIST Atomic Spectra Database, Line Identification Plot. <u>https://physics.nist.gov/PhysRefData/ASD/lines_form.html</u>.
- 3. J. D. Gillaspy, "Highly charged ions", J. Phys. B: At. Mol. Opt. Phys. 34, R93-R130 (2001).
- 4. NIFS Web, LHD photo. http://www.lhd.nifs.ac.jp/lhd/image/LHD_11th_cycle.jpg

Thank you for listening!

Supported by

