

Radiation hydrodynamic simulations of $\lambda = 2 \ \mu m$ laser irradiation of tin microdroplets

J. Sheil, D. Hemminga, M. M. Basko, W. Ubachs, R. Hoekstra, J. Colgan, O. O. Versolato

Outline of the talk

- Motivation for this session
- Problem statement:
- $\lambda = 2 \ \mu m$ laser irradiation of tin microdroplets and/or slab targets.
- RALEF-2D code and results
- Conclusion and outlook

Code comparison and validation

Motivation: Provide a platform with which simulation results can be compared for a <u>well-defined problem</u>.

Problem motivation

Simulating EUV Emission from Laser-Produced Plasma

EUVL Workshop

LBNL, Berkeley, CA

Steve Langer, Howard Scott , Hai Le

LLNL is developing solid-state lasers

Thulium laser ($\lambda = 1.9 \mu$ m) is one such example.

- Average power \approx 300 kW.
- Pulse-to-pulse jitter < 1%.
- Excellent temporal shaping capabilities.

Key points:

1. 'Does this help or hurt conversion efficiency?'

2. 'Simulations can be used to assess the potential of thulium lasers without the expense of building and fielding one.'

Critical electron density set by laser wavelength according to

 $n_{ec} = 10^{21} / \lambda^2 \text{ cm}^{-3}$

 $n_{ec,1.06 \,\mu m} \approx 10^{21} \,\mathrm{cm}^{-3}$ - Dense, optically <u>thick</u> plasma (Nd:YAG). $n_{ec,10.6 \,\mu m} \approx 10^{19} \,\mathrm{cm}^{-3}$ - Optically <u>thin</u> plasma (CO₂).

 $n_{ec,2 \ \mu m} \approx 3 \ x \ 10^{20} \ cm^{-3}$

- How do electron density profiles vary over time?
- Where is the critical surface?
- Electron temperature distributions? Radiation transport?...

λ = 2 μm laser irradiation of tin microdroplets and/or slab targets

Simulation parameters:

- λ = 2 μm
- Droplet diameter: 25 μ m and 50 μ m
- <u>Temporal profile</u>: Box shape, **10 ns** duration
- Spatial profile: Gaussian having a beam waist $(1/e^2)$ of **100 \mum**
- Laser power densities: **5 1**, **0.5**, 0.1 and 0.05 x 10¹⁰ W/cm²

Output quantities:

- Time- and space-dependent *electron* and/or ion densities.
- Time- and space-dependent electron temperatures.
- EUV spectra and conversion efficiencies.

RALEF-2D code

RALEF-2D solves the single-fluid, single-temperature hydrodynamic equations in two dimensions (x-y or **r-z** geometry)

RALEF-2D code: Equation of State

Frankfurt Equation of State

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

The equation of state package FEOS for high energy density matter*

OMMUNICATION

Steffen Faik^{a,*}, Anna Tauschwitz^a, Igor Iosilevskiy^{b,c}

^a Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany

^b Joint Institute for High Temperature of RAS, Izhorskaya str. 13 k 2, 125412 Moscow, Russia

^c Moscow Institute of Physics and Technology, Institute lane 9, 141700 Dolgoprudny, Moscow region, Russia

Can model (i) **high-temperature** plasma states and (ii) **low-temperature** liquid-gas phase coexistence region.

RALEF-2D code: Radiation transfer and opacities

Energy transport <u>via radiation</u> is modelled using the steady-state radiation transfer equation $k_{\nu}: Absorptivity$

$$\Omega . \nabla I_{\upsilon} = k_{\upsilon} (B_{\upsilon} - I_{\upsilon})$$

 I_{υ} : Spectral radiation intensity

Opacity tables: THERMOS

package

 k_{υ} calculated for each (ρ , T) pair by solving steady-state collisional-radiative

rate equations.

M. M. Basko, Phys. Plasmas **23**, 083114 (2016)

M. M. Basko, V. G. Novikov, and A. Grushin Phys. Plasmas **22**, 053111 (2015) (2016)

A.F. Nikiforov, V. G. Novikov, and V. B. Uvarov, *Quantum-Statistical* Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State

V. G. Novikov et al., High Energy Density Phys. 3, 198 (2007)

 B_{υ} : Spectral intensity of a blackbody radiator (Plank)

RALEF-2D code: Mesh

<u>Mesh</u>

 $\rho = 6.9 \text{ g/cc}$

•

۲

٠

RALEF-2D code: Mesh

<u>Mesh</u>

- 147276 mesh nodes
- Droplet diameter = 25 μm
- $\rho = 6.9 \, \text{g/cc}$

Reflect upper plane to replicate droplet

Temporal and spatial variation of ρ , n_e

Temporal and spatial variation of ρ , n_e

Temporal variation of density

What ions emit inband EUV light?

Temporal and spatial variation of T and zion

Temporal variation of temperature

Variation of p, T with laser intensity

Variation of maximum T with laser intensity

Variation of maximum T with laser intensity

Variation of maximum T with laser intensity

Conclusions

- 1. Undertaken RALEF-2D simulations of $\lambda = 2 \ \mu m$ laser irradiation of a tin microdroplet.
- 2. Identified variation of (ρ , T) on laser intensities in the range (**0.5 5**) x 10¹⁰ W/cm².
- 3. Comparisons drawn with Nd:YAG (λ = 1.064 µm) case.

<u>Outlook</u>

How will the results depend on:

- 1. Underlying Equation of State (EOS)?
- 2. Adopted opacity tables? See James Colgan's talk on Tuesday.

ADVANCED RESEARCH CENTER FOR NANOLITHOGRAPHY

Thank you for your attention!!

