

Center for Functional Nanomaterials

High-sensitivity hybrid EUV resist synthesis via vaporphase infiltration

<u>Nikhil Tiwale</u>¹, Ashwanth Subramanian², Kim Kisslinger¹, Ming Lu¹, Aaron Stein¹, Jiyoung Kim³, Chang-Yong Nam^{1,2}

¹Center for Functional Nanomaterials, Brookhaven National Laboratory ²Department of Materials Science & Chemical Engineering, Stony Brook University ³Materials Science and Engineering, The University of Texas at Dallas

Extreme ultraviolet (EUV) nanolithography resist challenges

Li et al. (2017), Fallica, et al. JM3 (2016), Tiwale et al. Proc. SPIE 11326 (2020)

Infiltration synthesis using ALD system

Brookhaven Center for Functinal

National Laboratory Nanomaterials

Tiwale et al. J. Mater. Chem. C (2019), U.S. Patent Application 16/808,661(2020) 6

Infiltration synthesis of hybrid resists

Enhanced EUV Sensitivity (Improved Productivity)

Tunability of compositional distribution

Enhanced Etch Resistance

Tiwale et al. J. Mater. Chem. C (2019), Tiwale et al. Proc. SPIE 11326 (2020), Tiwale et al. Proc. SPIE 11612 (2021), U.S. Patent Application 16/808,661(2020)

High sensitivity resist (HSR)-MO_x EUV resists

 \Box Al primed ZnO_x & Al primed-SnO_x, drop in critical dose with

increased dose requirement due to inter-crosslinking

Increased EUV absorption due to Zn or Sn maybe compensating

AlO_x primed SnO_x

Brookhaven[®] Center for Functinal National Laboratory Nanomaterials

sufficiently high infiltration

Tiwale et al. Proc. SPIE 11612 (2021)

Controllable ZnO_x infiltration into HSR & preliminary EUVL results

Controllable infiltration depths

Cross section of HSR-Z2C4 after post-infil bake

78 mJ/cm²

72 mJ/cm²

Tiwale et al. (in preparation)

Acknowledgement

n[°] | Center for Functinal ry | Nanomaterials

Office of Science

- Funding: U.S. Department of Energy
- Collaborators: J. Kim (UT Dallas), G. Freychet (NSLS II), E. Gann (NSLS II/NIST)
- EUV Lithography performed at CXRO (LBNL) Sponsored by C. Koh (Samsung Electronics)

