

2022 Source Workshop Held Online - October 22nd - 27th, 2022

Session8, S81

DEVELOPMENT PROGRESS OF THE KEY COMPONENT TECHNOLOGIES FOR A LASER PRODUCED PLASMA EUV LIGHT SOURCE

<u>Yuichi Nishimura</u>, Yoshifumi Ueno, Shinji Nagai, Fumio Iwamoto, Kenichi Miyao, Hideyuki Hayashi, Yukio Watanabe, Tamotsu Abe, Hiroaki Nakarai, Takashi Saito and Hakaru Mizoguchi

Gigaphoton Inc.: 400 Yokokura Shinden, Oyama-shi, Tochigi 323-8558, JAPAN

Gigaphoton LPP-EUV Source System

Key Components

Sn-droplet Generator

- Minimum-mass target supply to reduce debris
- In-line Sn fuel system to extend the lifetime

Main/Pre-pulse Laser

 High conversion efficiency without increased Sn plasma energy

Debris Mitigation

 Optimized H₂ gas flow to extend mirror lifetime

Shooting Control

 High-accuracy spatial and temporal control between lasers and droplets to increase EUV energy stability

Pre-pulse laser optimization

for high CE and low-energy ion plasma generation

- An advanced pre-pulse irradiation technology reduces the high-density part of the "mist" target which absorbs EUV radiation and generates high energy ions when the main-pulse laser is irradiated.
- ✓ Higher CE and Lower ion energy spectrum was confirmed at the research bench.

lon energy spectrum

Images of Sn-mist and EUV

Shooting Control system

Off-center shooting evaluation

Generation of Sn-fragments depends on laser position offset ΔX.
No Sn-fragments occur under condition of Δx/R below 1.1.
Mie-scattering setup

Shooting Control system Stable EUV radiation and debris reduction

✓ A newly developed in-situ shooting control system optimizes laser conditions.

- \checkmark EUV energy 3 σ and dose error 3 σ improved by a remarkable 50%.
- ✓ Since ∆x/R is below 0.2 for this new control technology, fragment-free and reflectivity lossfree EUV mirror samples were demonstrated after a mid-term test (~25Billion pulses).

Mid-term test results of in-situ shooting system

Long-life Sn-droplet generator In-line Sn fuel supply development

New Droplet Generator (DG) with in-line Sn fuel supply system has been developed. \checkmark Stable droplets were generated continuously for over 2,000 hours.

Testing continues and we target a lifetime of 9,000 hours of continuous operation.

In-line Sn fuel supply system

Long-life Sn-droplet generator System evaluation

✓ An In-line Sn fuel supply system has been installed on our EUV source.

✓ Stable EUV emission has been demonstrated during Sn supply phase.

EUV Systems integration test result

Copyright 2022 GIGAPHOTON INC. All rights reserved.

1.4

1.2

0.8

0.6

0.4

0.2

0

energy

Vormalized EUV

Summary Gigaphoton's EUV source system key technologies

Gigaphoton's Head Office Oyama-shi, Tochigi, JAPAN

Key Component Development Status

- Advanced pre-pulse laser technology achieves high conversion efficiency without increasing the energy of the plasma.
- New in-situ shooting control system remarkably improves EUV energy stability.
- As a result, fragment-free and reflectivity loss-free EUV mirror samples were obtained after a 25 Billion pulse operation test.
- An In-line Sn fuel supply system has been successfully installed on our EUV source system.

With these technologies, higher EUV source system availability would be achieved to support HVM EUV lithography industries.

| Copyright © Gigaphoton Inc.