Investigation of Laser-Produced Plasmas During the Irradiation Using Collective Thomson Scattering

Y. Pan¹, K. Tomita²

1 Kyushu University, 2 Hokkaido University

Introduction

Dr. Tomita's talk:

 Collective Thomson scattering (CTS) is a powerful method to diagnose <u>CO₂ laser +</u> <u>droplet</u> plasma

velocity field and pressure

Ion feature of collective Thomson scattering: Experimental setup

z	>			
	0.5mm		1.1	
		Sn		
		75		~
		A		
	V			

Nd:YAG	Probe	Drive		Measured space and time		
Wavelength	532 nm	1064 nm	Space	Z = 0.13 to 0.4 mm	Y = -0.2 to 0.2 mm	
Pulse width	4 ns	7 ns	Time	-2, 0, 2, 4 ns from the peak of drive laser		
Laser energy	4 MJ	200 mJ				
(FWHM)	50 µm	650 μm	Laser peak in	Laser peak intensity: 6×10 ⁹ W/cm ² KYUSHU		

Time evolution of CTS spectra at 0.13 mm above target

- Electron density $(n_e) \propto \text{Intensity}$
- Electron temperature $(T_e) \propto \Delta \lambda_{\text{peak}}$
- Ion drift velocity $(v_d) \propto$ Doppler shift

* Assume $T_e = T_i$, * Ion charge Z_i from FLYCHK

Temporal resolved 2-D Sn plasma T_e and n_e profile, during the laser pulse

5

Measured Sn plasma parameter marked in Sasaki et al, JAP 2010, Fig. 15:

Current work and Summary

YAG + solid target produced 20~50 eV Sn plasma

Summary

- CTS: feasible to **Nd:YAG(1.06 μm) + solid target** produced Sn plasma for EUV.
- Can be helpful to the fundamental EUV research and can benchmark simulations.

