Compact rotating Sn disc target LPP source

Yusuke Teramoto¹, Bárbara Santos¹, Guido Mertens¹, Ralf Kops¹, Margarete Kops¹, Wilko van Nunspeet¹, Marcel Schneider¹, Klaus Bergmann²

¹Ushio Germany GmbH

²Fraunhofer ILT

2022 Source Workshop, October 27, 2022

Copyright(C) 2022 Ushio Germany GmbH, All Rights Reserved.

Compact, versatile, easy-to-use EUV source

Target design specifications Driver Nd: YAG laser Target Liquid Sn-covered rotating disc target **Debris filter** Multi-stage filters Collector Grazing-incidence collector Dimensions 1200x1400x2200 mm Operating frequency (laser power) Up to 100 kHz (350 W) Source plasma Emission size: 110x50 µm Emission power: 7 W/2 π sr (2 % bandwidth at 13.5 nm) Intermediate focus Intensity: 65 W/cm² Brightness: 40 W/mm²/sr

USHI

EUV spot obtained at IF

- A 2-ns, 400-W laser was selected for the current development.
- CE is approximately 2-2.5 %.
- EUV energy stability is <2 % (best case).
- EUV light was observed at the intermediate focus (IF) point after the debris filters and collector.

Summary and future work

Summary

- Experimental setup was modified with a new target module, debris filters and a collector module.
- Grazing-incidence collector is currently being tested.
- EUV spot was confirmed at the intermediate focus (IF).

Future work

- Introduction of the prototype source.
- Experiment at higher power (scaling to the target performance).
- Long-term stability/reliability test.

