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Outline:
There’s a lot going on in LER

• Photon and acid shot noise
• Reaction-diffusion kinetics
• Development and dynamical scaling
• Overall model for LER
• What’s missing – future work
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Continuum Approximation

• The real world is discrete (photons, atoms, etc.), but 
most macroscopic models (e.g., litho simulation) 
make the continuum approximation
– Matter and energy are described with continuous 

mathematical functions
– Ex:  aerial image intensity, acid concentration after 

exposure, resist dissolution
• What are the implications of making the continuum 

approximation?
– Line-edge roughness cannot be predicted
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Continuum Approximation Example:  
Chemical Concentration

• Concentration:  The number of atoms or molecules 
of a certain type per unit volume
– By necessity, an average over a volume

• What is the meaning of H(x,y,z) – the concentration 
of acid at a specific point in space?
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Stochastic View of 
Chemical Concentration

• Model atom/molecule as a point located at its center of mass
• Consider a volume V – is the molecule in the volume or not?

– This is a binary proposition, governed by the binomial distribution:  
P(n) = probability of finding n molecules in V

– The binomial probability distribution can be well approximated by a 
Poisson distribution with average concentration C
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Stochastic View of 
Chemical Concentration

• Example: for a typical 193nm resist formulation, 
G0NA = 0.042 /nm3 (G0 = the initial concentration of 
PAG, NA = Avogadro's number)

13.1=nFor V = (3 nm)3

9=nFor V = (6 nm)3

42=nFor V = (10 nm)3
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Photon Shot Noise
(Also a Poisson Distribution)

• Example: for a typical 193nm resist with 10 mJ/cm2

dose to clear,

• Example: for an EUV resist with 5 mJ/cm2 dose to 
clear,

97=nFor A = (1 nm)2

9700=nFor A = (10 nm)2

%10/ =nnσ

%1/ =nnσ

3=nFor A = (1 nm)2

300=nFor A = (10 nm)2
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%6/ =nnσ
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EUV Resists

• High energy EUV photons (92 eV) produce 
secondary electrons, which then travel ~few 
nanometers to expose PAG
– How far is an important unanswered question
– Quantum efficiency can be greater than 1

• Simple approach to account for this blur is to 
convolve aerial image with the secondary electron 
position probability density function
– Result is a decrease in image log-slope (ILS)
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Stochastic View of 
Exposure Reaction

• Including photon shot noise, acid uncertainty is

• When h = 0, σh = 0.  When h = 1, max

• Max value of                           

• The pure photon shot noise contribution is very 
small, even for EUV
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Reaction-Diffusion
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Stochastic View of 
Reaction-Diffusion

• Is reaction-diffusion different from just diffusion?  Yes, if the 
reaction is catalyzed by the diffusing species.

 CH2-CH 

M

H+

von Smoluchowski Trap:

Reaction can occur once 
acid approaches the 
blocking group within its 
capture radius, a.

aRate ∝
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Stochastic View of 
Reaction-Diffusion

• If an acid passes through the capture zone and a reaction 
doesn’t occur, that acid is more likely to pass through that 
zone again because it is close by (correlation)

• Probability of reaction is governed by the time average of the 
acid concentration as it diffuses around
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Stochastic View of 
Reaction-Diffusion

• Deriving the statistics of reaction-diffusion is hard! For the 
details, please see:  Chris A. Mack, Fundamental Principles 
of Optical Lithography: The Science of Microfabrication, 
John Wiley & Sons, (London: 2007).  
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Stochastic View of 
Deprotection

• Statistical uncertainty in the blocked polymer site 
concentration comes from the Poisson distribution of the 
initial blocked sites, plus the stochastics of deblocking

• Combining with our previous expressions for σheff and σh
gives the final result
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Stochastic View of Exposure + 
Reaction-Diffusion

• Final expression for the uncertainty in deblocked 
polymer concentration:
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Correlation and Acid-Catalyzed 
Reaction-Diffusion

• As one acid diffuses and catalyzes several deprotection 
reactions, those deprotections are correlated

• Perform integrations numerically, examine the results
• Results can be almost perfectly fit with the standard 

exponential correlation function:
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Correlation and Acid-Catalyzed 
Reaction-Diffusion
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Development and Dynamical 
Scaling
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Dynamical Scaling (1+1)

α = 1/2
β = 1/3
z = α/β

Data collapses to a single curve for the right values of the scaling exponents
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Line-Edge Roughness
(Tying it all Together)

• Consider a small deviation in resist development 
rate.  The resulting change in resist edge position 
will be approximately

• For some variation in development rate σR,
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Line-Edge Roughness
(Tying it all Together)

• The Lithographic Imaging Equation

• Thus,
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Line-Edge Roughness
(Tying it all Together)

• How to improve LER:
– Increase ILS
– Increase γ
– Decrease σR/R

• These terms sometimes work against each other
• The product γ NILS controls exposure latitude for a 

given feature, and thus lithographers already work 
to maximize this term
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Line-Edge Roughness and 
Acid Diffusion
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Line-Edge Roughness and 
Acid Diffusion
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Future Work (What’s Missing)

• Base quencher has been ignored (by me) to date
– Quencher will always be at lower concentrations than acid, adding an 

extra term to the final uncertainty in blocked polymer that could be 
significant

– Quencher can dramatically improve the latent image gradient, thus 
quencher concentration and diffusion will be important levers for 
optimizing LER (there has to be an optimum quencher concentration)

• Development rate uncertainty
– Examine impact of correlations of development rate noise
– How does a development rate gradient affect things?
– What happens as the dissolution rate becomes very slow – will we 

move into the directed percolation depinning (DPD) universality class?
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