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Background and Motivation 

•  Pellicles are unavailable for protecting the EUVL masks due to high 
absorption of EUV beam in most solid materials 

Fused Silica Substrate 

Light Source 

Conventional Optical Lithography 

Pellicle 

•  EUVL masks need to be protected against all particles > about 20 nm 

Low Thermal Expansion Substrate 

Extreme Ultraviolet Lithography 

13.4 nm 
EUV Light 

Mo/Si 
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Layer Absorber 
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Protection Schemes 

•  Mask inside a carrier or scanner 

Mask 

C
arrier or scanner 

Critical Surface •  Cover plate to reduce risk 
volume 

Cover Plate 

Mask 
E -∇T 

•  Critical surface upside down to 
avoid gravitational settling 
(Cover plate underneath mask 
during shipping, storage, and 
pump down) 

•  Electric field to make use of 
electrophoresis 

•  Thermal gradient to make use 
of thermophoresis 

Particle 

Trap 

Particle 

Trap 

•  Particle trap surrounding mask 
to avoid particle penetration 
from the side 

Asbach et al., Journal of Nanoparticle Research 8:705-708 (2006) 

The Intel project started in 2004. Particle contamination of EUVL photomasks 
was unknown. It was feared that thousands of particles might deposit on the 
mask during each operation. We need to investigate a broad range of 
protection schemes. 
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Particle Source Identification 
ATOFMS Mask Scan 

▪ Complex organic compound or mixture --
possibly polymer 

▪ Contact points between the 
mask surface and pins 

  Particles come mostly from contact points between mask surface and pins 

Yook et al., IEEE Trans. Semi. Manu. 20(2): 176-186 (2007). 
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Validation of Pozzetta Carrier Design on Particle 
Generation during Real Shipping 

Mask 
Pin 

PZT600-51125 

Mask 
Standoff 

PZT600-69925 

•  The pin-support generates considerable particles during shipping. 

•  The standoff-support generates almost no particles.  

Mask Scan 
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Study of Various Protection Schemes inside a Carrier 

PF =  
Number of injected particles into the chamber 

Number of deposited particles on the wafer 

PF 

Absolute 
Protection 

No Protection 

∞

•  No particle deposition with face-down mounting and a cover plate 

Top Injection Chamber Cover 

Yook et al., J. Aerosol Sci. 38:211-227 (2007). 
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Effect of Cover Plate Protection (dp = 10 nm) 

▫ No particle deposition on the critical 
surface down to dp = 10 nm 

Critical 

Surface 

Particle Trap Cover Plate 

Chamber 

Particle Injection 
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Experimental Setup 

Turbo 

Chamber Cover 

P2 

Pump 

Particle injection 

Pump 

Main Chamber 

                Opposing jet injector 

P1 

Q: volumetric flow 

2

1

P
P
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Q

vP ⋅=

Axial jet injector 

Kim, J.H. et al., J. Vacuum Sci. Technol. A24(2):229-234 (2005) 
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Thermophoresis Test Set Up 

FIG. 4. Stopping distance (a)

−∇ T = 0 K/cm

Gas Flow

Quiescent Zone

FIG. 4. Stopping distance (b)

−∇ T = 10 K/cm

Gas Flow

Quiescent Zone

Kim, J.H. et al., J. Vacuum Sci. Technol. B24(3):1178-1184 (2005)  

Experimental cases: 
P:  100 mTorr, 50 mTorr 
∇T:  0 K/cm, -10 K/cm 
dp:  125 nm, 220 nm (on wafers) 

             70 nm, 100 nm (on masks) 
vi:  below, at, or above critical speed 
Gap:     1, 2 or 3 cm 
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Vacuum chamber 
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Thermophoresis at 100 mTorr, 2 cm Gap 

100 mtorr 

dp = 125 nm 

dp = 220 nm 

Kim, J.H. et al., J. Vacuum Sci. Technol. B24(3):1178-1184 (2005) 

vp = 31 m/s for 125 nm 

vp = 18 m/s for 220 nm 

•  Thermophoresis improves protection.  
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[m/s] 

Simulations at 50 mTorr  
125 nm, 1 cm Gap, vi = 6.5 m/s 

-∇T = 0 K/cm -∇T = 10 K/cm 

Many particles deposited 

(some by diffusion) 

No particles deposited 

•  Thermophoresis overcomes diffusion. 
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New NIST Nanoparticle Standards: 
60 nm and 100 nm SRM 
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Nanometer Differential Mobility Analyzer  
(Nano-DMA) 



19 

Issues with PSL Particle Standard 

•  Different light scattering than particles 
from processes  

•  Decomposition from exposure to deep 
ultra-violet (DUV) lights  

•  Deformation due to adhesion forces  
A 1.3 µm PSL sphere after adhering to a chromium 
surface for 24 hrs. From Dahneke, B. “The 
influence of flattening on the adhesion of particles,” 
J. Colloid Interface Sci., vol. 40(1), (1972). 
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Standard Particle Deposition for 
Scanner Calibration 

•  Calibration of surface inspection tools with  
particles of different materials 

•  Development of accurate size standards 
•  Providing samples for cleaning studies 
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Haze Observed under Atmospheric and 
Vacuum Conditions  

50nm SiO2. Target deposition area: 1inch 
spot size at the center. Testingtime: 2 min.  
(Atmospheric Pressure) 

100 nm PSL particle. (Main 
Chamber p = 50 mTorr). Testing 
time: 1.5 hours  
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Airborne Molecular Contaminants (AMCs) 
Classification of AMCs 

Acids Bases 

Condensable Dopants 

  HF       H2SO4 

 HCl       HNO3 

 H3PO4     HBr  

   AMINE 

   NH3    

   NMP 

   HMDS 

  B2H6     BF3  AsH3 

   TCEP  TEP  TPP 
 DOP  DBP  DEP 

 Siloxanes   BHT 

   No Classes 

       H2O2    O3 

    IPA   Acetone 

SEMI Standard F21-95, 1996 
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Controlled Particle Deposition on Mask Blanks 

Mask Scan Area 

(140 mm x 140 mm) 

Deposition Plan 

(~ 2000 particles) 

Detection of Particles 

on a Quartz Mask 

PSL 

# ~ 2010 

PSL 

# ~ 2060 

PSL 

# ~ 2000 

PSL 

# ~ 1930 

SiO2 

# ~ 1950 

SiO2 

# ~ 1820 

SiO2 

# ~ 2060 
SiO2 

# ~ 2010 

SiO2 

# ~ 1980 

▫ Known material 

▫ Known number of particles 

▫ NIST-traceable particle size 

▫ Controlled deposition spot size 
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Summary 
•  Experimental methods and models have been 

developed to evaluate protection schemes for masks 
in carrier or vacuum tools. 

•  New carriers with tapered standoff generates almost 
no particles during shipping.  

•  Face-down mounting and cover plate are very 
effective in protection. 

•  Thermophoresis is most helpful to protect against 
particles driven by diffusion. 

•  Method has been developed to deposit standard 
nanoparticles for inspection tool calibration. 

•  Method has been developed to avoid haze formation 
caused by AMC. 
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