Next generation EUV lithography: Challenges and opportunities, Dublin

Vadim Banine, Andrei Yakunin, Denis Glushkov
Agenda

• Roadmap
• Challenges and opportunities
• Status
• Summary & conclusion
Agenda

• Roadmap
• Challenges and opportunities
• Status
• Summary & conclusion
IC & Lithography roadmap towards <10nm

Source: Customers, ASML, 05/10

Notes:
1. R&D solution required 1.5~2 yrs ahead of Production
2. EUV resolution requires 7nm diffusion length resist
3. DPT = Double Patterning
EUV lithography is optical lithography...

- Resolution scales with aperture (starting at 0.25) and illumination wavelength (13.5nm → 14x leverage to 193nm, 6x -> 2x leverage on 13.5 nm), and is extensible (beyond 8 nm).
- Throughput scales with source power and system transmission efficiency.

\[CD = k_1 \cdot \frac{\lambda}{NA} \]

low-k, imaging enhancements
- support off-axis illumination (NXE:3100 has conv. illumination)

13.5nm (6.x nm) EUV radiation
- Improved resist contrast

Increase NA to 0.32
- (NXE:3100 has 0.25 NA)

<table>
<thead>
<tr>
<th>k₁</th>
<th>0.25</th>
<th>0.32</th>
<th>0.35</th>
<th>0.40</th>
<th>0.45</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 nm</td>
<td>0.50</td>
<td>0.64</td>
<td>0.70</td>
<td>0.80</td>
<td>0.90</td>
</tr>
<tr>
<td>24 nm</td>
<td>0.44</td>
<td>0.57</td>
<td>0.62</td>
<td>0.71</td>
<td>0.80</td>
</tr>
<tr>
<td>22 nm</td>
<td>0.41</td>
<td>0.52</td>
<td>0.57</td>
<td>0.65</td>
<td>0.73</td>
</tr>
<tr>
<td>18 nm</td>
<td>0.33</td>
<td>0.43</td>
<td>0.47</td>
<td>0.53</td>
<td>0.60</td>
</tr>
<tr>
<td>16 nm</td>
<td>0.30</td>
<td>0.38</td>
<td>0.41</td>
<td>0.47</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Example for 13.5 nm

- conventional illumination possible
- off-axis illumination required
- NA too small, even with off-axis illumination
Opportunity to extend of EUV down to sub 5 nm possible

increasing apertures up to 0.7, wavelength reduction down to 6.8 nm using 13 nm compatible optics with depth of focus as the major challenge
EUV and BEUV product roadmap spans >10 years

<table>
<thead>
<tr>
<th></th>
<th>0.25 NA</th>
<th>0.32 NA</th>
<th>>0.40 NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lens mirrors</td>
<td>6M</td>
<td>6M</td>
<td>6/8M</td>
</tr>
<tr>
<td>Wavelength</td>
<td>13.5 nm</td>
<td>13.5 nm</td>
<td>13.5 nm</td>
</tr>
<tr>
<td>Product</td>
<td>ADT</td>
<td>3100</td>
<td>3300B</td>
</tr>
<tr>
<td>Introduction year</td>
<td>2006</td>
<td>2010</td>
<td>2012</td>
</tr>
<tr>
<td>Resolution (hp)</td>
<td>32 nm</td>
<td>27 nm</td>
<td>22 nm</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.5</td>
<td>0.8</td>
<td>0.2-0.9</td>
</tr>
<tr>
<td>Overlay (SMO)</td>
<td>7.0 nm</td>
<td>4.5 nm</td>
<td>3.5 nm</td>
</tr>
<tr>
<td>Throughput (wph)</td>
<td>4 wph</td>
<td>60 wph</td>
<td>125 wph</td>
</tr>
<tr>
<td>Dose (mJ/cm²)</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Source (W)</td>
<td>3</td>
<td>105</td>
<td>250</td>
</tr>
</tbody>
</table>

*Under study:
- 6/8M
- New λ*
Agenda

• Roadmap
• Challenges and opportunities
 • Wavelength choice
• Status
• Summary & conclusion
Possible mirrors and wavelengths

- Materials, Wavelengths, Theoretical transmission (TT) per mirror
 - Cr/Sc @ 3.1 nm -> TT= 60%
 - Cr/C @ 4.4 nm -> 50%
 - La/B4C and C/ B4C @ 6.x nm -> 80%
- Optical column transmission (10 mirrors)

6.x nm is the choice:
- Best transmission
- Easier manufacturing
Introduction to changing source wavelength: List of challenges

- **Imaging**
 - Flare level scales $\propto 1/\lambda^2$
 - Bandwidth of a single mirror $\Delta\lambda/\lambda(Mo/Si)=4\% \rightarrow \Delta\lambda/\lambda(La/B4C)<1\%$
 - Bandwidth of the optical column $\Delta\lambda_{\Sigma}/\lambda(Mo/Si)=2\% \rightarrow \Delta\lambda_{\Sigma}/\lambda(La/B4C)=0.6\%$

- **MLM Technology**
 - Smaller layer thickness $\propto \lambda$,
 - Requirements to interlayer diffusion $\propto \lambda$
 - Larger number of bi-layers per multilayer

- **Source**
 - New fuel is needed

- **Resist (not discussed in this presentation)**
 - Quantum efficiency of current EUV resist will decrease due to lower absorption of 6.7nm(186eV) photons vs 13.5nm(92eV) photons
 - Potential shot noise increase

- Currently transition from 13.5→6.x nm (6.6-6.8 nm) is considered
Agenda

• Roadmap
• Challenges and opportunities
• Status
 • Surface roughness and Imaging evaluation
• Summary & conclusion
Mid-spatial frequency (MSFR) and flare level

- Flare reduces contrast
- MSFR is linked to surface roughness
- Flare scales with wavelength as $1/\lambda^2$ so by $13.5\text{nm}\rightarrow 6.\times \text{ nm}$, flare increases 4x at the same MSFR

<table>
<thead>
<tr>
<th>MSFR, nm</th>
<th>Flare, %</th>
<th>Flare, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13.5nm</td>
<td>6.7nm</td>
</tr>
<tr>
<td>0.2</td>
<td>16</td>
<td>65</td>
</tr>
<tr>
<td>0.14</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>0.12</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>0.1</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>0.05</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Achieved for NXE3100

0.1 nm MSFR can be taken for image simulation

Demonstrated roughness (MSFR optimized)
Exp. latitude vs DOF as calculated for 11nm (conventional illumination $\sigma=0.8$)
Comparison 13.5nm@NA0.45 vs 6.7nm@NA0.25

MSFR 0.1nm corresponds:
13.5nm - 4%
6.7nm -16%

Depth of Focus 2x larger with 6.7nm
Agenda

• Roadmap
• Challenges and opportunities
• Status
 • Multilayer mirrors
• Summary & conclusion
1st Pilot MLM coating La/B\textsubscript{4}C for the range 6.6-7.0 nm

Theoretical

1st experimental MLM

\begin{itemize}
 \item \(\lambda=6.63\text{nm}, \delta\lambda=0.06\text{nm}, R=80\%\)
 \item \(\lambda=6.67\text{nm}, R=44.3\%, \delta\lambda=0.06\text{nm}\)
\end{itemize}

Reason for low R: interlayer diffusion \(\rightarrow\) Reflectivity can be improved

Bandwidth of the optical column (11 mirrors):
\[\Delta\lambda/\lambda(\text{La/B4C})=0.6\%\ (\text{vs} \ 2\% \text{ for} \ 13.5 \text{ nm})\]
Agenda

• Roadmap
• Challenges and opportunities
• Status
 • Source
• Summary & conclusion
Source: materials and spectra

- Gd and Tb are the main potential materials of choice for 6.x lithography
- Simultaneous optimization of ML band and emission spectral power is required

Optical throughput optimized for the coating (10 mirrors)
Optical throughput optimized for the maximum emission spectrum
Investigating Conversion efficiency (CE) for 6.77 nm with LPP

CE in 2π in band, %

- **Gd**
- Target optimization (CO$_2$)
- Power density scaling (Nd-Yag)

CE is defined as usual in 2π in bandwidth. But bandwidth is not 2% as for 13.5 nm but 0.6%.

In-band CE for 6.x nm (1.8% vs theoretical 3-5%) is already comparable with that of 13.5 nm Sn.
Agenda

• Roadmap
• Challenges and opportunities
• Status
 • Vacuum environment
• Summary & conclusion
Transmission of C and absorption in gases
6.7 nm vs 13.5 nm

Carbon-contaminated mirror

Gas absorption

No transmission penalty for the same C growth (<10% for optical column) or 5x thicker C on MLMs can be tolerated for the same transmission loss

Less transmission loss (~10%) or Gas absorption is 10-1000x less →
- Less strict vacuum specs
- Mitigation schemes will work much better
Throughput comparison 13.5 and 6.x systems

Theoretical CE 1:1 for 6.x and 13.5

Theoretical Optical throughput 3x for 6.x vs 13.5 nm

Source/Optics wavelength mismatch 1/3 for 6.x vs 13.5 nm

Vacuum environment transmission 1.2x for 6.x vs 13.5 nm

Total throughput for 6.x vs 13.5 nm is comparable
Agenda

• Roadmap
• Challenges and opportunities
• Status
• Summary & conclusion
Summary and conclusions

- Lithography for 6.x nm wavelength has a potential to extend EUVL beyond 11 nm node
- ML coating
 - Has a potential of for high reflectivity (up to 80%) for LaB$_4$C
 - Currently demonstrated reflectivity is 44% thus better inter-layer diffusion control is required
- EUV source
 - 2 potential source fuels are investigated: Tb and Gd
 - CE 1.8% has been demonstrated
- Optimization of EUV source spectrum with ML optics is required
- Transmission of gases and contaminants for 6.x is significantly (up to 5x) better than for 13.5 nm

- 6.x EUVL has a potential for a throughput comparable with 13.5 nm lithography at higher resolution
Acknowledgements

The work presented today, is the result of hard work and dedication of teams at ASML and many technology partners worldwide.

Special thanks to Hans Meiling, Konstantin Koshelev, Leonid Smaenok and the team of Nikolay Salashenko for providing input to this presentation.