

Multilayer optics for EUV and beyond

Hagen Pauer, Marco Perske, Torsten Feigl, Sergiy Yulin, Viatcheslav Nesterenko, Mark Schürmann, Norbert Kaiser

Fraunhofer IOF Institute for Applied Optics and Precision Engineering

Jena, Germany

Dublin, November, 14th, 2010

Hagen.Pauer@iof.fraunhofer.de

- Introduction
- λ > 13.5 nm
- λ = 13.5 nm
- λ < 13.5 nm</p>
- Summary and Acknowledgement

Introduction

- λ > 13.5 nm
- λ = 13.5 nm
- λ < 13.5 nm</p>
- Summary and Acknowledgement

XUV spectral region

Normal incidence EUV and soft X-ray multilayers @ Fraunhofer IOF

Multilayer	λ range	λ	N	R	R vs. theory	FWHM
AI - based	70 150 nm	110 nm	-	60 %		-
Sc - based	40 50 nm	46 nm	20	52 %		4.6 nm
Si - based	12.4 30 nm	30 nm 26 nm 24 nm 21 nm	20 25 30 40	27.1 % 25.8 % 29.4 % 38.5 %		3.1 nm 2.6 nm 2.4 nm 1.6 nm
Si - based	EUV lithography	13.5 nm	60	69.5 %		0.5 nm
B - based	6.4 11.0 nm	10 nm 6.7 nm	100 200	37.4 % 26.0 %		0.14 nm 0.04 nm
Sc - based	3.1 4.4 nm	4.4 nm 3.1 nm	300 400	7.1 % 20.3 %		0.021 nm 0.008 nm
V - based	2.4 3.1 nm	2.5 nm	400	5.2 %		0.006 nm

- Introduction
- λ > 13.5 nm
- λ = 13.5 nm
- λ < 13.5 nm</p>
- Summary and Acknowledgement

Spectral range from 40 to 120 nm

- mainly for astronomy and astrophysics (to detect emission lines of orbs)
- Coating of high reflective multilayer optics (Sc/Si based)
- Coating of broad band mirrors (Al single layer + flouride)

Source: http://sohowww.nascom.nasa.gov/gallery

Spectral range from 40 to 120 nm

Multilayer	λ	Ν	R	FWHM
Sc - based	46 nm	20	<mark>52</mark> %	4.6 nm

Reflectance of

Sc/Si multilayer mirrors

designed at different wavelengths in the spectral range from $\lambda = 36$ to 50 nm

S. Yulin et al., "Enhanced reflectivity and stability of Sc/Si multilayers", SPIE 5193, 2004

λ > 13.5 nm

Spectral range from 40 to 120 nm

Multilayer	λ	R	
AI - based	110 nm	60 %	

Reflectance of

- Al/LiF,
- Al/LiF/MgF₂ and
- Si coatings

in the spectral range from $\lambda = 90$ to 125 nm

- Introduction
- λ > 13.5 nm
- λ = 13.5 nm
- λ < 13.5 nm</p>
- Summary and Acknowledgement

EUV Lithography driver: Moore's Law

TRADIC (TRansistorized Airborne DIgital Computer) , 1955

λ = 13.5 nm

EUV lithography: Reflective optics under vacuum conditions

[Nature Photonics 4, 24-26 (2010)]

λ = 13.5 nm

Coating and characterization of LPP collector optics

[Nature Photonics 4, 24-26 (2010)]

LPP collector coating challenges

- **R > 65 %**
- $\lambda = (13.500 \pm 0.050) \text{ nm}$
- → ∆d = 0.025 nm = 25 pm
- Diameter: > 660 mm
 Lens sag: > 150 mm
 Tilt: > 45 deg
 Weight: > 40 kg

LPP collector coating challenges

	EUV collector mirror (Diameter ≈ 660 mm)	Factor 2.27 Mio.: Jena – Dublin (≈ 1,500 km)
Bi-layer thickness error	∆d < 25 pm	∆d < 60 μm

Dublin at night, 20.08.2006, Hans-Peter Bock hpbock@avaapgh.de

Surface characterization of EUV collector substrates - basis

No robust roughness data available so far (complex geometry, roughness: HSFR < 0.2 nm)

→ New technique:

Surface characterization of **EUV** collector substrates - application

- \rightarrow Check for roughness distribution, homogeneity, defects
- \rightarrow Light scattering technique:

fast, non-contact, comprehensive, with high sensitivity

180° Azimuth - 22

Roughness at different radii

Azimuth – 4

uth = 90° = Azimuth = 13

Azimuth = 0°

0.45

Multilayer mirrors for EUV applications

[Nature Photonics 4, 24-26 (2010)]

Enhancement of Reflectivity by Interface Engineering

$\lambda = 13.5 \text{ nm}$

Beam splitter

- AOI = 45 deg
- Design: SiN membrane / [Mo/Si]^x
- R @13.5 nm = T @13.5 nm = 18%

Transmission

- Introduction
- λ > 13.5 nm
- $\blacksquare \quad \lambda = 13.5 \text{ nm}$
- λ < 13.5 nm</p>
- Summary and Acknowledgement

Spectral range from 6 to 12 nm

Spectral range from 2 to 5 nm

Enhanced reflectance of Sc- and V-based multilayer mirrors with interface-engineering

- Introduction
- λ > 13.5 nm
- $\lambda = 13.5 \text{ nm}$
- λ < 13.5 nm
- Summary and Acknowledgement

Summary

XUV multilayers

EUV multilayers

Surface characterization

- High-reflective multilayers for $\lambda = 2 \dots 150$ nm

- R > 65 % and d-spacing accuracy of $\Delta d < 25 \text{ pm}$ on world's largest EUV multilayer mirror (\emptyset > 660 mm)
- Different optical designs concerning application (beam splitters, polarizers, broadband designs...)
- Light scattering for HSFR substrate characterization

Interface engineering

- Enhanced stability and reflectivity

Applications

- Growing number of non-EUVL applications

Acknowledgements

- Project partners for financial support of R&D work
- PTB Berlin team for EUV reflectivity measurements
- EUV project team @ Fraunhofer IOF:

Christoph Damm, Angela Duparré, Andreas Gebhardt, Tobias Herffurth, Christina Hüttl, Thomas Müller, Michael Scheler, Ronald Schmidt, Sven Schröder, Wieland Stöckl, Marcus Trost, etc...

1 m

II-

D.