EUV Dark-Field Microscopy for Actinic Defect Inspection

Aleksey Maryasov1,4, Stefan Herbert1,4, Larissa Juschkin1,4, Anke Aretz2,4, Klaus Bergmann3, Peter Loosen1,4,5, Rainer Lebert3

(1) Chair for Technology of Optical Systems (TOS), RWTH Aachen University
(2) Central Facility for Electron Microscopy (GFE), RWTH Aachen University
(3) Bruker Advanced Supercon GmbH
(4) JARA - Fundamentals of Future Information Technology
(5) Fraunhofer Institute for Laser Technology

Introduction to EUV mask blank inspection

- Laboratory scale defect detection tools for mask blank inspection at 13.5 nm are highly demanded and crucial to the successful implementation of next generation EUV lithography;
- Substrate roughness and remaining particles of size 20 – 150 nm are critical for print circuit quality during wafer manufacturing;
- Aerial scanning tools (Zeiss ALM5 at 157 nm) and phase measurement tools (Lasertec MPM at 157 nm) are available, but not for EUV;
- Amplitude defects as e.g. particles on top of multilayer mirror (ML) and phase defects inside of ML have to be detected and localized at the ML-defined wavelength (actinic), i.e. at λ = 13.5 nm.

Theory of defect detection

- (amplitude/phase) defects can be detected efficiently in dark field mode
- detection sensitivity is limited by different kinds of noise:
 - signal noise = \(\frac{n_f}{P \cdot QE \cdot P \cdot M} \)
 - noise readout noise (crucial if fast readout is needed)
 - amplification: gain M, noise factor F (additional noise)
 - dark (thermal) noise (temperature and time dependent)
 - spurious noise (clock induced charge (CIC), small)
 - photon induced noise (noise from signal itself)
 - \(N_{\text{ph}} = h\nu(3.7eV - 25eV) / 13.5 nm \)
 - A reasonably high level of confidence of signal detection requires photon induced noise be higher than others:
 - The Rose criterion: Signal/Noise ≥ 2 needed for 100% certainty in distinguishing image features
 - estimation of source requirements:
 - Required irradiation dose (determined by detector sensitivity, magnification, transmission and defect scattering efficiency into objective solid angle) = 1 - 100 mJ/cm²;
 - Illumination slightly divergent;
 - Typical magnification = 20; Large object field = 500 – 1000 mm²;
 - Scan speed 4 mm/s @ 10 fps & 650 mm²;
 - Source requirements:
 - Used etendue = 10⁻¹⁰ m²·sr; Collection efficiency \(\eta_{\text{coll}} = 0.7 \times 2 \times 5 \times 10^{-6} \);
 - Average radiancy = 0.3 – 30 W/(cm²·sr) = 1 W/(cm²·sr) (DPP, 1:1 imaging)

Experimental setup

The experimental dark field reflection microscope based demonstrator for defect inspection has been successfully realized.

- central wavelength: 13.5 nm
- 3k-electronic source, 0.5 mA, 1% BW, 50 Hz
- diameter: 500 – 800 µm
- grazing incidence ellipsoidal collector
- NA_{cic} > 0.03, NA_{ellip} ≥ 0.04
- NA_{cic} > 0.14, NA_{ellip} ≥ 0.16
- iris aperture, Zr filter; deflection ML mirror 45°
- central stop => dark field operation
- mask blank holder and positioning (25 mm)
 - FOV=650 µm, RES=800 nm limited by CCD (1024² pixel of size 13 µm, 1.1 fps, 10-e-7pin)
- Schwarzschild objective
 - 21x, focal length 27 mm
 - NA_{ellip} = 0.11, NA_{cic} = 0.21
 - specified resolution 70 – 100 nm

Experimental results

- structured pits on a multilayer mirror:
- structured bumps on a multilayer mirror:
- natural defects on a multilayer mirror:

Conclusions and outlook

- With limited resources and restriction to available components, we have accomplished first steps for a defect inspection concept.
- Programmed structures (pits and bumps) and natural defects on multilayer mirrors have been measured. Defect detection limits with a large field of view and moderate magnification were investigated in terms of required source photon flux and detection camera performance.
- We are confident that an economic solution for sub-30 nm sensitivity and acceptable throughput can be achieved in the next steps.