Two Colour and Two Photon Ionization Processes in Intense Extreme-UV and Optical Laser Fields

John T Costello

National Centre for Plasma Science & Technology (NCPST)/School of Physical Sciences, Dublin City University

Collaboration @ FLASH-DESY, Hamburg

XFEL: P. Radcliffe & M. Meyer

Paris (UPMC): R. Taieb (T) & A. Maquet (T)

PTB (Berlin): A. A. Sorokin (now at IOFFE & DESY) & M. Richter

DESY (Hamburg): K. Tiedke, S. Düsterer, W. Li, P. Juranić & J. Feldhaus

Orsay: D. Cubaynes & D. Glijer

Queen’s University Belfast: C. Lewis, A Delserieys, P. Orr & H. v. d. Hart (T)

Moscow State University: A. N. Grum-Grzhimailo, E. V. Gryzlova, S. I. Strakhova

Crete: P. Lambropoulos (T)

Oulu/GSI: S. Fritzsche (T)

Thanks to AG Photon (R Treusch et al.) & AG Machine (M Yurkov et al.)
Collaboration @ LCLS X-ray FEL (SLAC)

MPQ/TU-Munich: A. Maier, W. Helml, W. Schweinberger & R. Kienberger

SLAC: R. Coffee, J. Hastings & J. Bozek

XFEL: P. Radcliffe, T. Tschenschcher & M. Meyer

DESY (FLASH): S. Düsterer & J. Feldhaus

DESY (CFEL): I. Grguras & A. Cavalieri

Ohio (OSU): C. Roedig, G. Doumy* & L. DiMauro

DCU: T. J. Kelly, V. Richardson, L. Nikolopoulos (T) & J. T. Costello

*Now at Argonne.
Some members of the current collaboration
6 laboratory areas focused on pulsed laser matter interactions (NIR – X-ray/ 30fs – 30 ns, spectroscopy/ imaging/ PLD)

Academic Faculty (5): John T. Costello, Eugene T. Kennedy (Emeritus), Jean-Paul Mosnier, Lampros Nikolopoulos (T) and Paul van Kampen

Current Postdocs (3): Dr. Patrick Hayden, Dr. Sateesh Krishnamurthy and Dr. Subhash Singh

Funded by:
SFI - Frontiers and Investigator
HEA – PRTLI (Kit)
IRCSET (People)
EU - Marie Curie (People)

Current PhD students (10): Jack Connolly, Leanne Doughy, Brian Doohan, Colm Fallon, Eanna Mac Carthy, Mossy Kelly, Vincent Richardson, Jiang Xi, Damien Middleton, Cathal O’Broin

Visiting Students: Ricarda Laasch (Univ. Hamburg) and Nadia Gambino (Univ. Catania)

Interns: Deirdre Cogan, Michael Creagh, Adrian Maguire and Florian Wruck

DCU International Visiting Fellow: Prof. Sivanandan Harilal (Purdue)

International Workshop on EUV Sources, UCD, November 13-15, 2010
Outline of Talk - Web Version

1. EUV FEL Fundamentals
2. Two Colour Femtosecond Pump-Probe Setup at the FLASH FEL
3. Two Colour (Above Threshold) Ionization
 - EUV-Optical Pulse Synchronisation at FLASH
 - Atomic Dichroism in He at FLASH
 - Long (> 100 fs) Pulse Width Measurements at the LCLS
 - Ultrashort (<~ fs) Pulse Width Measurements at the LCLS
4. One Colour - 2 Photon Ionization
 - Case Study 1: 2-Photon 4d-Ionization of Xe (ATI)
 - Case Study 2: Resonant 2-Photon 3d-4d excitation in Kr
5. Some conclusions
Outline of Talk - 15 Min Version

1. FLASH Specifications at 13.5 nm
2. Two Colour Femtosecond Pump-Probe Setup at the FLASH FEL
3. Two Colour (Above Threshold) Ionization
 - EUV-Optical Pulse Synchronisation
 - Long (> 100 fs) Pulse Width Measurements at the LCLS
 - Ultrashort (<∼ fs) Pulse Width Measurements at the LCLS
4. One Colour - 2 Photon Ionization
 - Case Study 1: 2-Photon 4d-Ionization of Xe (ATI)
5. Some conclusions
Collaboration grew out of EU RTD Project: HRPI-CT-1999-50009

Title: “X-Ray FEL Pump Probe Facility”

Partners: Orsay, DCU, Lund, MBI, BESSY & DESY
1. SASE-FELs - Fundamental Principle

SASE FEL Requirements: Mono-energetic relativistic electron bunch of very high charge density
And low emittance with an ultra-precise long magnetic undulator in perfect alignment

\[N_u \lambda_u = vt \quad N_u \lambda_{ph} = (c-v)t \quad \Rightarrow \lambda_{ph} \sim \lambda_u (c-v)/v \sim \lambda_u/2\gamma^2 \]

1GeV machine \(\gamma \sim 2000 \)
\(\lambda_u \sim 2.7 \text{ cm} / \lambda_{laser} \sim 6\text{ nm} \)
\(\lambda = \lambda_u (1+K^2/2)/2\gamma^2 \)
\(K = eB \lambda_u /2\pi mc \quad \gamma = E/mc^2 \)

Electron bunch slips behind lightwave by \(\lambda \) per undulator period - *microbunching*

http://feldfrei.wordpress.com
FLASH Overview

- LINAC Energy: ~1 GeV
 - ~4 – 60 nm
FLASH: Key Performance Indicators

Wavelength range (fundamental):
4 - 60 nm (2010)

FEL harmonics (@13.7 nm):
3 rd : 4.6 nm (270 eV)
5 rd : 2.7 nm (450 eV)

Spectral width (FWHM):
0.5-1 %

Pulse energy:
up to 50 µJ (average),
120 µJ (peak)

Pulse duration (FWHM):
10-20 fs

Peak power (fundamental):
Few GW

Average power (fundamental):
0.5 W (up to 10000 pulses /sec)

Photons per pulse:
~ 10^{13}
FEL output builds up from spontaneous emission (photon noise) \(\Rightarrow \text{SASE} \) – ‘Self Amplified Spontaneous Emission’ \(\Rightarrow \) Fluctuations in beam profile, pointing stability, intensity, spectral distribution and pulse duration !! Spatially coherent only - ‘Seeded FEL projects at FLASH & LCLS’
1. **FLASH**: 30 – 300 eV/10 Hz (1 – 1000 micropulses/bunch) - 10uJ/10fs/micropulse (CW RF)

2. **LCLS**:
 1 nC bunch: 0.8 – 12 keV (60 Hz)/ 2.5 mJ/250 fs
 10 pC bunch: 0.8 – 12 keV (60Hz)/50 uJ/ 1 – 4 fs

3. **Spring-8 (SCSS)**: 20 - 22 eV (60Hz)/ 50 uJ/ 100 fs
USPs of XFELs in AMO Physics?

- *Ultra-dilute* targets
- *Photo*-processes with *ultralow cross-sections*
- *Pump and probe* experiments (EUV + EUV or EUV + Opt.)
- *Single shot* measurements
- *Few-photon* single and multiple *ionization processes*

NB1: Makes *inner-shell electrons key actors* in non-linear processes for the first time

NB2: Re-asserts *primacy of the photon* over field effects!

International Workshop on EUV Sources, UCD, November 13-15, 2010
1. Photoionization Experiments with the Ultrafast XUV Laser FLASH

2. Experiments at FLASH

3. Non-linear processes in the interaction of atoms and molecules with intense EUV and X-ray fields from SASE free electron lasers (FELs)

4. Two-colour experiments in the gas phase
M. Meyer, J. T. Costello, S. Düsterer, W. B. Li and P. Radcliffe
2. Photoelectron Spectroscopy Setup

Experimental Layout at FLASH - (EU-RTD)
Part 3. Atoms in Intense EUV (X-ray) + Optical (800 nm/ 2000 nm) fields

Case 1. EUV-Optical Pulse Synchronisation

Case 2. (FLASH) - Dichroism in He ~ 13.5 nm

Case 3. Long (> 100 fs) Pulse Width Measurements at the LCLS

Case 4. Ultrashort (<~ fs) Pulse Width Measurements at the LCLS
FLASH NIR/UV and XUV Beam Layout

800 nm, 120 fs

International Workshop on EUV Sources, UCD, November 13-15, 2010
Two colour ATI/ Laser Assisted PES

Superposition of visible and XUV pulses in a noble gas jet

Schins et al. PRL 73, 2180 (1994)

\[A + h\omega_{XUV} \rightarrow A^+ + e^- (T_{KE})_{\pm n\hbar \omega_L} \rightarrow A^+ + e^- (T_{KE} \pm n\hbar \omega_L) \]

- Cross Correlation

Sideband intensity very sensitive to XUV-IR pulse area overlap.

NIR (800 nm) fs laser pulse

Gas Jet

Electron Spectrometer

\[h\omega_{ir} = 1.55 \text{eV} \]

Ar(IP) 15.76 eV

\[A + h\omega_{XUV} \rightarrow A^+ \pm \frac{1}{2}h\omega_{XUV} \rightarrow A^+ \pm h\omega_{L} \rightarrow A^+ + e^- (T_{KE})_{\pm n\hbar \omega_L} \]
Two colour ATI/ Laser Assisted PES

FLASH: 13.7 nm, 10-30 fs, 20µJ
Optical Laser: 800nm, 120 fs, 400µJ, 5 x 10^{13} W/cm²

\[
\text{He } 1s^2 + h\nu_{\text{XUV}} \rightarrow \text{He}^+ 1s + \varepsilon_p
\]
\[
\text{He } 1s^2 + h\nu_{\text{XUV}} + n h\nu_{\text{OL}} \rightarrow \text{He}^+ 1s + \varepsilon_s, \varepsilon_d
\]
Two colour ATI/ Laser Assisted PES

Sideband number/intensity depend strongly on XUV/NIR overlap ⇒ by comparison with theory we are able to determine relative time delay to better than 100 fs

1. New ultrafast XUV-modulated optical-reflectivity methods

2. ‘TEO’
 A. Azima et al., APL, 94 144102 (2009)

NIMA 83, 516-525 (2007)
Atomic Dichroism in Two Colour ATI - He

Strong Polarisation Dependence of Sidebands (Low Field)

FLASH: 13.7 nm, 10-20 fs, 20µJ
OL: 800nm, 4ps, 400µJ, 6 x 10^{11} W/cm^2

He 1s^2 + hν_{XUV} ----> He^+ 1s + ε_p
He 1s^2 + hν_{XUV} + hν_{OL} ---> He^+ 1s + ε_s, ε_d

PRL 101 Art. no. 193002 (2008)
Atomic Dichroism in Two Colour ATI - He

Low Optical Laser Field

High Optical Laser Field

\[\sigma(\theta) = 3S_d + (5S_s + S_d) \cos^2 \theta \]

\[S_s/S_d = 1.25 \pm 0.3 \]

P. Theory: A Grum-Grzhimailo et al.

SPA: A Maquet/ R Taieb

PRL 101 Art. no. 193002 (2008)
Two Colour X-ray + NIR Expts @ LCLS

Collaboration: R. Kienberger, J. Bozek, A. Cavalieri, R. Coffee, J. Costello, S. Duesterer, M. Meyer, L. DiMauro & T. Tschentscher - MPQ, SLAC, DESY-CFEL, DCU, DESY-F:ASH, XFEL & Ohio State

Few Femtosecond Photo and Auger Electron Dynamics in Strong Optical Fields

Idea.
LCLS has a ‘low bunch current mode’ which allows it to deliver ultrashort pulses of duration: 1 - 4 fs…..

So we are using the Single Shot Atomic Streak Camera or SSASC technique* to measure it.

First test experiment at LCLS - LONG X-RAY PULSES - sideband generation.
Target: Ne, LCLS: 1 keV & ~50 -300 fs, Laser: 800 nm/ ~1 mJ & < 100 fs

Key Message: 300 fs (from FEL parameters) = 120 +/- 20 fs optical from SB analysis..
70 fs (from FEL parameters) = ≤ 70 fs optical from SB analysis.
Two Colour X-ray + NIR Expts @ LCLS

Single Shot Atomic Streak Camera – SSASC => few fs pulse widths
Target: Neon, LCLS: >850 eV, ~1 - 4 fs, Laser: OPA (2000 nm, ~ 7 fs),

a. Without dressing field => unshifted, no broadening…..
b. With dressing field (zero crossing) => unshifted, broadened…..
c. With dressing field (peak value) => shifted, not broadened…..

1. Electron bunch must replicate ultrashort X-ray pulse…….Neon is the Photocathode !!
2. Electron bunch duration must be shorter than one half cycle of the OPA dressing field (~ 3fs)……
3. Photoelectron energy shift follows the electric field of the IR dressing laser…..
4. In the zero field crossing case the electron pulse is streaked in both directions resulting in a broadened but unshifted electron line - the electron linewidth will depend on the electron (X-ray) bunch length (case ‘b’)
5. On the other hand, if the electron bunch falls on the carrier peak, all parts of the bunch ‘feel’ approximately the same dressing field, ergo the electron bunch will be shifted by a constant energy (case ‘c’)
6. Postprocessing - retrieve zero crossing cases to determine LCLS pulse width distribution (< 1 to 4 fs ?)

International Workshop on EUV Sources, UCD, November 13-15, 2010
Two Colour X-ray + NIR Expts @ LCLS

Few fs mode - under analysis……

Process. \(\text{Ne} + h\nu \ (1.8 \text{ keV}) \rightarrow \text{Ne}^+ \ (1s^{-1}) + e^- + I_L \ (10^{14} \text{ W.cm}^{-2}) \)

Essentially mapping time (fs) to energy in (eV) allows one to measure X-ray (and EUV) pulse widths to attosecond accuracy provided the X-ray (EUV) pulse width is less than one one half cycle of the optical laser in duration !!

3fs case - simulation and experiment………

International Workshop on EUV Sources, UCD, November 13-15, 2010
Part 4. Two Photon Ionization (TPI) of atoms in an Intense Field

Case 1. Non-Resonant: Xe @ $h\nu = 93$ eV

Case 2. Resonant: Kr @ $h\nu = 46$ eV (3d-4d)
Motivation - Xe in intense EUV fields

Very highly charged ions observed - is MPI an important contributor?

Photoionization of xenon atoms in the EUV at ultra-high intensities: ion time-of-flight spectra

Sorokin, Richter et al., PTB, PRL 2007 –

International Workshop on EUV Sources, UCD, November 13-15, 2010

$h\nu = 93$ eV $\lambda = 13.3$ nm
$Xe + h\nu (93 \text{ eV}) - Xe^+(4d^{-1}) + e^- (~25 \text{ eV})$

- Single shot spectrum

- For low intensities ($<10^{13} \text{ W.cm}^{-2}$), one photon processes are dominant

- Salient features – spin orbit split 4d photoelectron line + Auger electron spectrum

- Not shown – 5s$^{-1}$ and 5p$^{-1}$ lines at higher KEs

NB: We measure electrons and not ions !!!
Now ramp up the intensity to > 10^{15} W.cm$^{-2}$

- Using MBES, first evidence of two photon *inner* shell ionisation, (in this case) of 4d electron –

 $\text{Xe} + 2h\nu \rightarrow \text{Xe}^+ 4d^9 + e^-$

- ‘Retardation field’ applied to suppress low KE electrons (one photon processes) – hence electrons detected are due solely to multiphoton events

- Energetically –

 $2 \times (93) \text{ eV} - 118 \text{ eV} = 68 \text{ eV}$

- Yield scales quadratically, $n=1.95 \pm .,$

 $\Rightarrow 2^{nd}$ Order Process !!
1. R-Matrix (H.W. Van der Hart) – one and two photon 4d emission cross sections

2. Dominant process is one photon ionization – 93 eV can remove next 4d as well - or maybe excite 4p – 4d. High rate of ‘inside-out’ ionization……

3. Accurate calculation requires a far more rigorous description of the atomic structure than at present

4. Estimated two photon 4d\(^{-1}\) emission is \(~1\%\) of total at ~ 7 x 10\(^{15}\) W.cm\(^{-2}\)
Two-Photon Inner-Shell Ionization in the Extreme Ultraviolet

1School of Physical Sciences and NCPST, Dublin City University, Dublin 9, Ireland
2LIXAM/CNRS, Centre Universitaire Paris-Sud, Bâtiment 350, 91405 Orsay Cedex, France
3Deutsches Elektronen-Synchrotron, DESY, Notkestraße 85, 22603 Hamburg, Germany
4School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
5Institute of Precision Optical Engineering, Department of Physics, Tongji University, 1239 SiPing Road, Shanghai 200092, China
6Physikalisch-Technische Bundesanstalt, PTB, Abbestraße 2-12, 10587 Berlin, Germany
7Ioffe Physico-Technical Institute, Polytekhnicheskaya 26, 194021 St. Petersburg, Russia

(Received 19 February 2010; published 29 June 2010)

We have observed the simultaneous inner-shell absorption of two extreme-ultraviolet photons by a Xe atom in an experiment performed at the short-wavelength free electron laser facility FLASH. Photoelectron spectroscopy permitted us to unambiguously identify a feature resulting from the ionization of a single electron of the 4d subshell of Xe by two photons each of energy (93 ± 1) eV. The feature’s intensity has a quadratic dependence on the pulse energy. The results are discussed and interpreted within the framework of recent results of ion spectroscopy experiments of Xe obtained at ultrahigh irradiance in the extreme-ultraviolet regime.

DOI: 10.1103/PhysRevLett.105.013001 PACS numbers: 32.80.Rm, 32.80.Fb, 32.80.Hd, 42.50.Hz
Case 2. Resonant 2-photon Excitation (Kr)

1. To date we have looked at a non-resonant two photon process (sort of ATI really)

2. FELs are wavelength tunable - one can also explore resonant two photon processes

\[\text{Kr } 3d^{10}4s^24p^6 \ (1S_0) + 2 \times h\nu \ (46 \text{ eV}) \rightarrow 3d^94s^24p^64d \ (J=0,2) \]

i.e., 3d - 4d two photon resonant excitation
1. $\text{Kr} \ 3d^{10}4s^24p^6\ (^1S_0) + 2 \times h\nu \ (46\ eV) \rightarrow \ 3d^94s^24p^64d\ (J=0,2) \ \text{i.e.,} \ 3d - 4d \ \text{two photon excitation}$

2. Of course there is a direct ionization path and the usual interference results - manifested as asymmetric resonance profiles (Fano/ Fano-Mies)

3. But here the $3d^94s^24p^64d\ (J=0,2)$ resonance undergoes Auger decay to Kr^+ on a femtosecond timescale - similar to the FLASH pulse duration - so competition between excitation and decay (ergo, in addition to simple ATI, this case makes for an intriguing, problem for theory).

$h\nu = 46\ eV \ (\sim 27\ nm)$

Meyer et al., PRL 104 213001 (2010)
Kr (3d⁹4d) 2 Photon Resonant Auger

MBES Photoelectron spectrum - ~ 10^{14} W.cm⁻²

![Graph showing MBES Photoelectron spectrum with peaks at 4p⁵ and 4s/Kr+](image.png)
Kr (3d⁹4d) 2 Photon Resonant Auger

MBES Photoelectron spectrum - ~ 10^{14} W.cm⁻²

$4p^5$

$4s / Kr^+$

$4p^44d$

Auger

ATI

$h\nu = 46$ eV

$4p^5$

$x 1000$

kinetic energy (eV)

intensity (arb. units)
Kr (3d⁹4d) 2 Photon Resonant Auger

Ionization rates – P. Lambropoulos, Crete

![Graph showing ionization rates versus intensity](image-url)
Two-Photon Excitation and Relaxation of the 3d-4d Resonance in Atomic Kr

M. Meyer,1 D. Cubaynes,1 V. Richardson,2 J. T. Costello,2 P. Radcliffe,3 W. B. Li,3 S. Düsterer,3 S. Fritzche,4,5 A. Mihelíc,6,7 K. G. Papamihail,6 and P. Lambropoulos6

1LIXAM, UMR 8624, CNRS-Université Paris Sud, Bâtiment 350, F-91405 Orsay Cedex, France
2National Center for Plasma Science and Technology and School of Physical Sciences, Dublin City University, Dublin, Ireland
3HASYLAB at DESY, Notkestraße 85, D-22607 Hamburg, Germany
4GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
5Department of Physics, P.O. Box 3000, Fin-90014 University of Oulu, Finland
6IESL-FORTH, P.O. Box 1527 and Physics Department, University of Crete, Heraklion, Crete 71110, Greece
7Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia

(Received 7 February 2010; published 27 May 2010)

Two-photon excitation of a single-photon forbidden Auger resonance has been observed and investigated using the intense extreme ultraviolet radiation from the free electron laser in Hamburg. At the wavelength 26.9 nm (46 eV) two photons promoted a 3d core electron to the outer 4d shell. The subsequent Auger decay, as well as several nonlinear above threshold ionization processes, were studied by electron spectroscopy. The experimental data are in excellent agreement with theoretical predictions and analysis of the underlying multiphoton processes.

DOI: 10.1103/PhysRevLett.104.213001 PACS numbers: 32.80.Rm, 32.80.Fb, 32.80.Hd, 42.50.Hz
Xenon - First detection of a so-called ‘above threshold ionization’ (ATI) two-photon process in an inner shell electron shell.

It is clear that the although single photon ionization processes dominate, they are sufficiently important at high irradiance that, for a given intensity, much higher ionization stages can be reached compared to optical lasers.

The strength and the nature of the $4d \rightarrow \varepsilon f$ resonance may open up, at high irradiance, additional ionization channels, namely the simultaneous multiphoton / multi-electron from the inner 4d shell, ‘inside-out ionization’ or ‘peeling the onion from the inside out’

Kr - first step on the road to resonant NL processes with EUV/X-rays… REMPI at X-ray.

Xe - Richardson et al. PRL (July 2 – 2010), Kr - Meyer et al., PRL (May 28 - 2010)
5. Summary and Next Steps

1. We have demonstrated interference free sidebands (SB) to high order, SB polarisation control, laser & FEL dependencies & SBs in atoms/ions

2. Especially useful as an EUV-Optical cross correlation technique

3. First resonant and non-resonant two photon ionization processes involving inner-shell electrons demonstrated at FLASH

4. Experiments started at LCLS (summer 2009) - SBs have been used to measure ‘long’ (> 100 fs) pulse widths

5. First few fs streak measurements at LCLS (July 2010) - under analysis

6. First data on angular distribution of SB electrons* at LCLS (last week)

7. LCLS will test the limits of UF X-ray pulse width and X-ray optical jitter measurement techniques – ‘Tandem streaking’ idea of Adrian Cavalieri just accepted for beamtime…..

8. Next step (physics) - X-ray laser pumping, coherent control, Rabi flops,…

9. 2011 and beyond: FLASH - seeding (sFLASH), LCLS/XFEL - aluminium ‘slotted spoiler’ for cleaner pulses, seeding (Echo 7 project),…..

* cf: Kazansky AK, Kabachnik NM, JOURNAL OF PHYSICS B-AMOP, 42 Article No. 121002 (2009)