EUV Spectra of Gadolinium Laser Produced Plasma

Colm O’Gorman¹, Bowen Li², Takamitsu Otsaku², Takeshi Higashiguchi², Akiro Endo³, Tony Donnelly¹, Thomas Cummins¹, Deirdre Kilbane¹, Padraig Dunne¹, Emma Sokell¹ and Gerry O’Sullivan¹

1: School of Physics, University College Dublin, Dublin 4, Ireland
2: Department of Advanced Interdisciplinary Sciences and Centre of Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Tochigi, Japan
3: Forschungszentrum Dresden, Dresden, Germany

1. Introduction

- Development of sources below 13.5nm is a challenge for EUVL.
- EUV emission at 6.xnm could be coupled with a La/B₄C multi layer mirror to make a next generation light source.
- Gadolinium has been previously shown to have large UTA emission peaking at 6.75nm[1,2]

2. Experimental Setup

- A 160ps, 1064nm, Nd:YAG laser pulse with energy of 450mJ irradiated the target.
- A range of power densities was achieved by varying the lens – target distance.
- Spectra from the plasma were analysed using a 2-meter grazing incidence soft x-ray spectrometer, shown in figure 3[3].

3. Atomic Calculations

- Cowan code spectral output was weighted with CR model [4] ion fractions to give theoretical spectra at various nₑ and Tₑ
- A range of power densities was achieved by varying the lens target distance.
- UTA statistics of Cowan code calculations show that 4d - 4f, 4p – 4d are the main contributing transitions in the 6.x-nm region.

4. Theoretical Spectra

- Experimental spectra from Gd₂O₃ plasma along with theoretical calculations[3] are shown in figure 4
- An electron temperature of 200 eV was found to give the best agreement with experiment

6. Future Work

- Further spectral analysis
- Absolute intensity measurements will be made with a photodiode and Mo/B₄C coupled detector. This will allow the measurement of conversion efficiency.
- Ion emission will be characterised using an electrostatic spherical sector analyser.

Acknowledgements: This work was supported by Science Foundation Ireland under grant number 07/IN.1/I1771.

contact:colmogorman@ucd.ie