Solutions with light – meet challenges and offer opportunities
Multilayer coating for EUV collector mirrors

2011 International Workshop on EUV and Soft X-Ray Sources

Hagen Pauer, Marco Perske, Sergiy Yulin, Marcus Trost, Sven Schröder, Angela Duparré, Torsten Feigl, Norbert Kaiser

Fraunhofer IOF
Angewandte Optik und Feinmechanik Jena, Germany

Dublin, November 9th, 2011

hagen.pauer@iof.fraunhofer.de
Multilayer coating for EUV collector mirrors

Contents

- Introduction
- Characterization of LPP collector substrates
- Multilayer coating of LPP collectors
- Summary and acknowledgement
Multilayer coating for EUV collector mirrors

Contents

■ Introduction

■ Characterization of LPP collector substrates

■ Multilayer coating of LPP collectors

■ Summary and acknowledgement
Multilayer coating for EUV collector mirrors

Coating and characterization of LPP collector optics

[\textit{Nature Photonics} 4, 24-26 (2010)]

\[\text{Fraunhofer IOF} \]
Multilayer coating for EUV collector mirrors

LPP collector coating challenges

\[R > 65 \% \]
\[\lambda = (13.5 \pm 0.03) \text{ nm} \]
\[\Rightarrow \Delta d = 0.015 \text{ nm} = 15 \text{ pm} \]

- Diameter: > 660 mm
- Lens sag: > 150 mm
- Tilt: > 45 deg
- Weight: > 40 kg

Fraunhofer IOF
Multilayer coating for EUV collector mirrors

LPP collector coating challenges

R > 65 %
\[\lambda = (13.5 \pm 0.03) \text{ nm} \]

\[\Delta d = 0.015 \text{ nm} = 15 \text{ pm} \]

- Diameter: > 660 mm
- Lens sag: > 150 mm
- Tilt: > 45 deg
- Weight: > 40 kg
Multilayer coating for EUV collector mirrors

Contents

- Introduction
- Characterization of LPP collector substrates
- Multilayer coating of LPP collectors
- Summary and acknowledgement
Surface characterization of EUV collector substrates

- No robust roughness data available
 - Complex geometry
 - Required roughness sensitivity

- New approach: Roughness characterization through light scattering measurements at $\lambda = 405$ nm
 - Non-contact
 - Fast, robust
 - High sensitivity
 - Information about roughness, defects, homogeneity, …

→ Superior characterization method for EUV collector mirrors before coating
The basics: Scatter modeling of EUV multilayer coatings

- Separate effects of substrate and thin film ML
- Roughness enhancement of ML = f(substrate roughness)
- Influence of substrate roughness becomes dominant if HSFR > 0.1 nm

→ Important basis for prediction of EUV performance of given substrate before coating

Multilayer coating for EUV collector mirrors

→ Perfect fractal behavior at smooth and rough areas
→ Prediction of performance at 13.5 nm based on detailed roughness information (PSD, HSFR)
Multilayer coating for EUV collector mirrors

Prediction based on roughness data obtained from scattering (before coating)

Reflectance measurements at PTB, Berlin (after coating)

→ Good correlation between predicted and experimental data
→ Accuracy of average predicted reflectance < 1%

Reflectance drops to 35 %
Multilayer coating for EUV collector mirrors

- Fast data acquisition: mapping of entire sample surface (100% characterization)
- High sensitivity to roughness (average HSFR = 0.1 nm)

Thorough characterization of collector substrate before coating

Check for homogeneity and defects
Contents

- Introduction
- Characterization of LPP collector substrates
- Multilayer coating of LPP collectors
- Summary and acknowledgement
NESSY – ‘New‘ EUV Sputtering System

Design and realization of an EUV sputtering system

Conception:

- magnetron sputtering of rotating and fast spinning substrates up to Ø 665 mm
- four deposition targets
- deposition of graded multilayers on curved substrates
Multilayer coating for EUV collector mirrors

Reflectivity of LPP collector mirror

Maximum reflectance along four lines within clear aperture of collector mirror:

\[R \approx 65\% \ @ \ r < 240 \ mm \]
\[R \approx 62\% \ @ \ r = 250 \ldots 320 \ mm \]

Measurements: PTB Berlin
Multilayer coating for EUV collector mirrors

Reflectivity of LPP collector mirror

Center wavelength along four lines within clear aperture of collector mirror:

\[\lambda = (13.50 \pm 0.03) \text{ nm} \]

Measurements: PTB Berlin
Multilayer coating for EUV collector mirrors

Reflectivity of LPP collector mirror

Measurement of reflectance along four lines within clear aperture of collector mirror:

108 measurement curves

Measurements: PTB Berlin
Multilayer coating for EUV collector mirrors

Contents

- Introduction
- Characterization of LPP collector substrates
- Multilayer coating of LPP collectors
- Summary and acknowledgement
Summary

Characterization of EUV collector optics:
- development of light scattering techniques for HSFR substrate characterization
- predict EUV reflectance before coating

Multilayer coating of EUV collector optics:
- R > 65 % and d-spacing accuracy of \(\Delta d < 15 \text{ pm} \)
 on world’s largest EUV multilayer mirror (\(\varnothing > 660 \text{ mm} \))
Acknowledgements

- **Cymer for LPP source development:**
 Norbert Böwering, Kevin Cumming, Bruno La Fontaine, David Brandt, Igor Fomenkov, Alex Ershov, Kay Hoffmann and many others

- **PTB Berlin team for EUV reflectivity measurements:**
 Frank Scholze, Christian Laubis, Christian Buchholz, Annett Kampe Jana Puls, Christian Stadelhoff, Martin Biel

- **EUV project team @ Fraunhofer IOF:**
 Christoph Damm, Andreas Gebhardt, Tobias Herffurth, Christina Hüttl, Robert Jende, Thomas Müller, Viatcheslav Nesterenko, Michael Scheler, Thomas Peschel, Stefan Risse, Sebastian Scheiding, Christoph Schenk, Ronald Schmidt, Mark Schürmann, Uwe Zeitner
Thank you!