

Paul Scherrer Institute

Evaluation of resist performance with EUV interference lithography

Yasin Ekinci, Michaela Vockenhuber, Bernd Terhalle, Mohamad Hojeij, Li Wang, Jens Gobrecht

Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland

Outline

- EUV interference lithography
 - Basics of EUV-IL
 - XIL-II: EUV-IL @ PSI
 - Versatile and high-resolution patterning with EUV-IL
- Evaluation of EUV-CARs
- First patterning results with BEUV
- Conclusions and outlook

EUV Interference Lithography

XIL-II beamline as Swiss Light Source (SLS)

- EUV lithography: 13.5 nm wavelengthUndulator source:
 - Spatially coherent
 - Temporal coherence: $\Delta\lambda/\lambda=4\%$
- Diffractive transmission gratings: Metal gratings
- written on Si₃N₄ membranes with EBL
- diffracted beams interfere
- interference pattern printed in resist

Advantages:

No proximity effect (e⁻⁻ mean-free-path < 1-3 nm)
No depth of focus: Mask-to-wafer = 1-10 mm
High resolution:

- Theoretical limit= 3.5 nm
- Current limit < 10 nm (world record in photon based lithography)
- Large area: up to 5x5 mm²
- Step and repeat: up to 80x80 mm² with stitching
 High throughput: typically 10 s: 10'000x e-beam
- Quality, reproducibility: enabling industrial operation
- Versatile structures

11 nm hp lines and 19 nm hp dots exposed in HSQ V. Auzelyte et al., J. Micro/Nanolith. MEMS MOEMS 8, 021204 (2009).

- On-site clean room:
 - Spin-coater, wet-bench, hot-plates, microscope, developer, optical thickness measurement
 - In clean room environment with amine filters.

2D periodic patterns by multiple beam interference

• Two-dimensional periodic patterns for 3-, 4- and 6-beam interference

Phase-control

- Grating positions determine relative phase between interfering waves
- Shift Δ_r perpendicular to the grating lines enables phase control by additional phase shift Φ

$$\sum_{n}^{N} U_{0,n} \exp(i(k_{x,n}(x - \Delta_{x,n}) + (k_{y,n}(y - \Delta_{y,n}) + k_{l,n}z)))$$

Terhalle et al. Proc. SPIE **8192**, 81020V (2011) Visible wavelength range: Boguslawski et al., Phys. Rev. A 84, 013832 (2011)

Yasin Ekinci, PSI

Ν

Phase-controlled EUV-IL: 4 beams

• 4-beam interference:

Phase-controlled EUV-IL: 6 beams

• 6-beam interference:

Quasicrystals (Penrose tilings)

5-beam interference

8-beam interference:

- Quasiperiodic patterns for photonics and alignment markers
- •LIL is good but has low resolution
- •E-beam is high resolution but pattern generation is difficult and only mimics the quasiperiodicity
- With EUV-IL; high resolution for alignment markes. high quality or shorter operation wavelength for photonics

A. Langner et al., Nanotechnology 23, 105303 (2012).

Other interference schemes

Non-diffracting EUV-Bessel beams:

Incoherent multiple-beam lithography:

Record resolution in photon-based lithography

8 nm half-pitch: The smallest patterns ever written with photons!

Evaluation with Resist-A

Resist-B

Inorganic resists

Status of EUV resists

Demonstrated. For sub-16 nm sensitivity is assumed to be hp independent as for >16 nm

Not clearly demonstrated. But has great potential, or requires process optimization for LER or pattern collapse.

Patterning with λ =6.5 nm

First patterning results with BEUV or deep EUV or hard EUV

Note: These results are preliminary and not conclusive yet.

Conclusions & Outlook

- EUV-IL is a powerful tool for academic research:
 - versatile nanostructures, high resolution, high throughput, large area.
 - It gets really exciting in sub-10 nm.
- EUV-IL is a powerful tool for resist evaluation for future technology nodes:
 - cost-effective, pitch-independent aerial image, High resolution
 - different wavelengths (BEUV).
- Current status of EUV resist development
 - Resist A: 18 nm hp resolution with ≈10 mJ/cm² sensitivity: LER improvements necessary (1) with thicker resist using pattern collapse mitigation and (2) line smoothing strategies
 - Resist B: 16 nm hp resolution with \approx 30 mJ/cm² sensitivity
 - For 16 nm hp senstivity less than 30 mJ/cm² should be feasible
- With decreasing HP: pattern collapse becomes the limiting factor
- Going from EUV to BEUV: resist development is necessary..

Acknowledgments: We thank the resist suppliers: Inpria, Shin Etsu, and JSR. Thanks to Todd R. Younkin for discussions.

Thank you for your attention!

Resist comparison

Resist name	Substrate	РАВ	Thickness	PEB	Developer /Time	Sensitivity @ hp 22 nm	Resolution
Resist-A	Si/Underlayer	105°C/90s	35 nm	90°C / 90s	TMAH 0.26N / 30s	9.5 mJ/cm ² ±1.1 mJ/cm ²	18 nm
Resist-B	Si/Underlayer	130°C/60s	30 nm	110°C /60s	TMAH 25% /30s	30 mJ/cm²	<16 nm
Inpria(X15JB)	Si/O₂ Plasma	80°C/1205	20 nm	80°C / 120s	TMAH 25% /1205	80 mJ/cm²	<16 nm
Inpria(XE15IB)	Si/O₂ Plasma	80°C / 180s	20 NM	80°C / 6os	TMAH 25% /30s	163 mJ/cm²	<< 16nm
HSQ(TMAH)	Si	No	35 nm	No	TMAH 2.6N / 60 s	229 mJ/cm ²	<16 nm
HSQ(351)	Si	No	35 nm	No	351 /30 s	659 mJ/cm²	<<16 nm

Yasin Ekinci,

Resist-A: Thinner resist for 16 nm hp

HP=16 nm, through dose

Yasin Ekinci,

Reproducibility tests

Yasin Ekinci,

Resist-A: Shelf-life

Yasin Ekinci,

Dose calibration

Sub-10 nm patterning with 2. order diffraction

Yasin Ekinci,