Emission Properties of Non-equilibrium Zirconium Plasma in Soft X-ray Region

Vasily Zakharov, Sergey Zakharov

EPPRA sas, Courtaboeuf, France
in collaboration with Keldysh Institute of Applied Mathematics, Russia

also with NRC Kurchatov Institute, Moscow, Russia
and with JIHT RAS and SRC RF TRINITI, Moscow, Russia

zakharovvas@gmail.com
Abstract

Zirconium-based plasmas are considered as a source of soft X-ray emission in water window waveband alongside with nitrogen- and bismuth-based radiation plasma sources. Such discharge and laser produced plasmas used in soft X-ray (and EUV) sources are in non-equilibrium state as a rule. This leads to a mismatch between the actual conditions of the plasma and its theoretical/computational estimations because of different effects like non-thermal electron distribution, self-absorption etc. leading to changes in ionization states, state populations, emission intensity and spectrum. In the report the radiance and emission properties of non-equilibrium zirconium plasma is examined and the optimal emission conditions for soft X-ray emission in water window region are explored. Kinetic parameters for non-equilibrium plasma including major inelastic ion interaction processes with non-thermal electrons and radiation, emission and absorption data are obtained in the approach based on Hartree-Fock-Slater (HFS) quantum-statistical model and distorted waves approximation. Modeling of plasma properties and emission is performed by using atomic, kinetic, radiation transport and RMHD Z* code.

Authors kindly thanks Prof. Gerry O’Sullivan for the idea of current work
Zirconium XI – XVI Lines

Zirconium Line strengths in Water Window region

4f-3d, 5p-3d transitions in Zr XI – Zr XX intensively emit in water window (WW) region

Line strengths of Zr XI – Zr XVI computed with Flexible atomic code
Zirconium XVII – XXII Lines

Zirconium Line strengths in Water Window region

Most intensive 4p-3d transitions start to contribute into WW region beginning from Zr XV up to Zr XXI

Line strength of Zr XVI – Zr XXII computed with Flexible atomic code
Non-Equilibrium Model

System of Kinetic equations

To calculate spectrum of emission we need to resolve the system of kinetic equations to obtain relative populations n_μ of levels

$$\frac{dn_\mu}{dt} = \sum_{\nu \neq \mu} n_\nu \alpha_{\nu \rightarrow \mu}(N_i, N_e, T, \rho, F) - n_\mu \sum_{\nu \neq \mu} \alpha_{\mu \rightarrow \nu}(N_i, N_e, T, \rho, F),$$

$$\sum_\mu n_\mu = 1,$$

$\alpha_{v \rightarrow \mu}$ and $\alpha_{\mu \rightarrow v}$ - total rates of the processes leading to increase and decrease of the level μ population n_μ, N_i and N_e – number of ions and electrons, T – temperature, ρ – density. Total rates include a different set of processes depending of model, kind of modelling etc.

Quasi-neutrality:

$$N_e = Z_0 N_i,$$

$$Z_0 = \sum_\mu z_\mu n_\mu,$$

z_μ – charge of the ion of level μ, Z_0 - average charge
Zirconium Non-equilibrium Plasma

Zirconium Ion populations

Electron density

\[N_e = 10^{19} \text{ 1/ccm} \]

Zirconium ion fractions for 1x1019 **1/ccm electron density**

Best conditions for emission in water window are expected at \(T > 80 \text{ eV} \) and higher.
Spectral Efficiency (SE) reaches its maximum (over 40%) at plasma temperature ~90 eV and decreases slightly after: SE = 2%(50eV) – 33%(70eV) – 40%(90eV) – 38%(110eV)
Radiation transfer in plasma

\[\frac{1}{c} \frac{\partial I_\omega}{\partial t} + (\vec{\Omega} \nabla) I_\omega = j_\omega - k_\omega I_\omega \]

\[U_\omega = c^{-1} \int I_\omega \, d\vec{\Omega}; \]

\[\kappa_\omega(n_e, n_i, T_e, U_\omega); \]

\[j_\omega(n_e, n_i, T_e, U_\omega); \]

\[I_\omega(r, z, \varphi, \theta) = \int_0^\tau \frac{j_\omega}{\kappa_\omega} e^{\tau - \tau'} \, d\tau; \]

\[\tau = \tau(x) = \int_0^x \frac{\kappa_\omega(r, z)}{\sin \theta} \, dx; \]

\[x = \sqrt{r_{out}^2 - r^2 \sin^2 \varphi} + r \cos \varphi \]

\[z = z_{out} + x \cdot \text{ctg} \theta \]

- Quasi-stationary
- Spectral radiation energy density
- Opacity
- Emissivity
- Intensity
- Cylindrical symmetry
- Optical depth
- Trajectory
Absorption coefficients

Bound-Bound (bb), Bound-Free (bf) & Free-Free (ff) processes

\[K_\omega = K_{\omega}^{bb} + K_{\omega}^{bf} + K_{\omega}^{ff} \]

\[K_{\omega}^{bb} = N_i (1 - e^{-\omega / T_e}) \sum_s P_s \sum_{\nu \mu} n_{\nu}^s (1 - n_{\mu}^s) \sigma_{\nu \mu}^{bb} \]

\[K_{\omega}^{bf} = N_i (1 - e^{-\omega / T_e}) \sum_{\nu} n_{\nu} (1 - f(\varepsilon)) \sigma_{\nu e}^{bf} \]

\[K_{\omega}^{ff} = N_e (1 - e^{-\omega / T_e}) \int d\varepsilon' f(\varepsilon')(1 - f(\varepsilon)) \sigma_{\varepsilon \varepsilon'}^{ff} \]

\[f(\varepsilon) = 1 / (1 + \exp((\varepsilon - \mu) / T)) \]
Emissivity

Emissivity in LTE and nonLTE cases

Emissivity (LTE):

\[j_\omega = \kappa_\omega I_p^{\omega}; \quad I_p^{\omega} = \frac{\omega^3}{e^{\omega/T} - 1} \]

Emissivity (general nonLTE)

\[j_\omega = j_{\omega}^{bb} + j_{\omega}^{fb} + j_{\omega}^{ff} \]

\[j_{\omega}^{bb} = N_i \omega^3 \sum_s P_s \sum_{\nu\mu} n_\mu^s (1 - n_\nu^s) \sigma_{\nu\mu}^{bb} \]

\[j_{\omega}^{fb} = N_i N_e \omega^3 \sum_{\mu} f(\varepsilon') (1 - n_\mu) \sigma_{\nu\varepsilon}^{bf} \]

\[j_{\omega}^{ff} = N_e N_i \omega^3 \int d\varepsilon f(\varepsilon)(1 - f(\varepsilon')) \sigma_{\varepsilon\varepsilon'}^{ff}, \quad \varepsilon' = \varepsilon + \omega \]
Zirconium target emission

Spectral Modeling for Zirconium spherical target

Zr emission for r=200um spherical target

Emission intensity, a.u.

Wavelength, nm

Electron density

$N_e = 10^{19}$ 1/ccm

Spherical target

$r = 200 \ \mu m$

Temperature raises → Broadening → Power of emission

Efficiency?
Remarks

- Zirconium ions XV – XXI emit intensively in water window region: 4p-3d, 4f-3d and 5p-3d transitions

- Maximum spectral efficiency for emission in water window region is over 40% for plasma at temperature of 80eV and hotter

- For spherical target of 200um radius and 10^{19} electron density the spectrum is broadened (absorption broadening)

The results were obtained in frame of FP7 FIRE Marie Curie action