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Why we care about electrons for EUV exposures 

EUV 

hn 

e- 

“Universal” curve for electron 

inelastic mean free path (IMFP) 

Electrons generated 

are near 80 eV, then 

lose energy 

• What energy electrons are 

generated 

• How far do they travel 

• What energies are present at 

which distances 

• What energies cause PAG 

decomposition 

Seah and Dench, 1979 

Is PAG reaction 

ionization (near 10 eV) 

or molecular excitation 

(near 2-3 eV)? 
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MODEL 

Inorganic 

Materials 

Photoelectron 

Spectroscopy 

E-Beam Depth Studies 

• Development 

• Mass Spec. 

Electron Energy 

Loss 

Spectroscopy 

(EELS) 

PAG 

• Mechanistic Analysis 

• Quantum Yield  

Different Material Sets/ 

Molecular Orbital Table 

Better EUV Resist Performance: 

Higher Quantum Yield, Lower Z-Parameter 

Secondary electron program overview 
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How far do they go? 
Important for understanding 

Resolution and LER 

• From the central absorption event, 

there will be a maximum range 

(laterally) for the electrons.   

• We measure the range by top down 

exposures and measuring the depth to 

represent the lateral electron travel 

away from the EUV absorption site in 

real exposures. 

Bake and 

Develop 

Vary Dose  

& Voltage 

e- e- e- 

Resist 

Thickness Loss 

(Ellipsometry) 

Resist 

EUV 

hn 

E-Beam Penetration Study:  

• Expose commercial CAMP resist with 5-2000 eV 

Electrons 

• Bake, develop and measure penetration using 

Spectroscopic Ellipsometry  
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E-beam depth of penetration studies 



cnse.albany.edu 
gdenbeaux@albany.edu 

 
ASML EUV ADT 

EUV MET 

ERIC tool (this project)  

EUV ROX (outgassing ) 
SEMATECH EUV MBDC 

Another building just 

completed here 

The CNSE facility 
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• Expose resist from 5-2000 eV across a range of doses.  

• Bake and Develop 

• Measure the thickness lost with ellipsometry (Woollam M-2000) 

Mass spectrometer 

E gun 

Sample 

Manipulator 

Electron Resist Interaction Chamber (ERIC) 
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Expose 

(vary energy 
and dose) 

Bake and 
develop 

Ellipsometry for 
thickness 

measurement 

Process flow for depth measurements 

Thickness lost is where sufficient reactions occur – not final stopping point of electrons 
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Electron penetration results – commercial resist 
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Higher energies penetrate deeper in resist – as expected 

Thickness loss doesn’t saturate – indicating statistical distribution of electron penetration 
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Illustration of process to measure relevant reactions at each depth from thickness loss 

 

Assume there is a threshold number of reactions for clearing 

Assume higher doses doesn’t physically change structure 

Determine relevant reactions from penetration measurement 
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Dose in uC/cm2 

Result indicates that electron energy for reactions 

with PAG occur near 5-10 eV – or the electrons 

would cause reactions deeper in the resist 

For 50-100 eV electrons, 

typical depth for reactions 

is 2-3 nm 

Determine relevant reaction depth 

Results from measurement of commercial resist 
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Similar result for PMMA 

Method works for resists regardless of resist design 
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• If all charge trapped in top surface of 60 nm film with relative permittivity of 2 

𝜙 =
𝜎𝑑

𝜀0𝜀𝑑
 , Electric potential f, dose (charge/area)  s, film thickness d, permittivity of free 

space e0, relative permittivity ed  

• Then would build up voltage 

• Until dielectric breakdown 

– (near 30V for 5 MV/cm material) 

• BUT… we see sample discharging 

  at much lower dose 
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Dielectric 

breakdown 

Other 

discharge? 

What happens to the electrons? 
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For 10 and 20 keV electrons: 

– Charge builds up at lowest doses then is 

stable – radiation induced conductivity 

– Takes hours to discharge after exposure 

– Is more negative for thicker films (more 

trapped electrons) 

J. Vac. Sci. Technol. B 17.6., Nov/Dec 1999 

Past work with higher energy electrons 
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Measure where electrons travel – not just where electrons cause reactions 

Direct measurement of electron penetration 

Wafer 

Conductive layer 

Resist 

picoammeter 

Kapton insulation 

Measure some reflected electrons with Faraday cup 

Measure transmitted electrons through resist 

Expose selected energies and currents 
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Literature search for Kapton secondary electron yield 

Not photoresist, but example polymer 

Secondary electrons affect measurement 
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From David Joy Database 

Gross et al.,  1983, IEEE Trans. On Electrical Insulation 

Willis and Skinner, 1973, Solid State Comm. 

Yang and Hoffman, 1987, Surf. Interf. Anal. 

Wide variation in literature results 

 

Secondary electron yield > 1  

will give opposite current in measurement 

Surface contamination 

and charging may affect 

results, especially for 

energy below 1000 eV 
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Transmitted current measurements 
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• Typical result that we want to see 

• Current transmitted through 

sample when electron gun is on 

• Rise and fall time are picoammeter 

response time 

Lower energy is not as repeatable– charging effects? 
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Transmitted current measurements 
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Electrons reach the substrate for low incident energy 

much deeper than reactions occur in the resist 

Lower measured transmission 

at energies where secondary 

electrons are most  likely to 

emit 

Excluded 6/4 data – all results from that sample are outliers 

Excluded low current < 10 nA experiments 
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Reflected current measurements 
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Reflected signal closely matches secondary electron yield from literature 
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Low Energy Electron Scattering in Solids Monte Carlo Modeling Program 

LESiS can start with photons or electrons and map photoelectrons and secondary 

electrons as they are created and destroyed in a solid film. 

Atomic Interactions Currently Part of the Model: 

Elastic Scattering: 

e- 

= Core Electrons 

= Valence Electrons 

DE ≈ 0  

e- 
e- 

e- Ionization: 

DE =  6-14 eV 

Ionization Energy  

e- e- Plasmon 

Generation: 

DE ≈ 3-12 eV  

A plasmon is a wave of bound 

valence electrons in a solid 

Currently Not 

being Included: 

DE ≈ 3-8 eV 

 M   M* 
Internal Excitation 

(Similar to Photolysis) 

Also not yet included: 

• Molecular interactions 

• Creation of Phonons 

• Energy lost as heat. 

LESiS modeling program 
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Same commercial resist used for penetration measurements 

Secondary e- 

Secondary e- 

Input e- 

(80 eV) 

2 nm 

2
.5

 n
m

 

Interactions principally with the p orbitals 

of Carbon and Oxygen: 

Electron trajectory simulations 
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Conclusions 

• EUV resist exposures are based on electron chemistry 

• We have developed a flexible experimental system to 

help understand these electron reactions 

• We have measured the electron blur directly 

• We are using the data to help optimize the simulation 

software 

• We plan to 
• Determine the actual number and energy of electrons present in the 

resist due to EUV exposure 

• Determine the PAG reactivity – the cross section versus electron 

energy 

– In order to help in the development of improved efficiency resists 
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