Complete Spatial Characterisation of EUV Wavefronts

David Lloyd, Kevin O’Keeffe, Simon Hooker
Complete Spatial Characterisation of EUV Wavefronts

1. Characterisation
2. Method
3. Results
4. Outlook

David Lloyd, Kevin O’Keeffe, Simon Hooker
• Successful design and implementation of (optical) experiments requires knowledge of illuminating radiation.

• Beam characterization concerned with:
 o Transverse intensity profile
 o Transverse phase profile
 o Spatial coherence
 o Temporal pulse shape
 o Temporal coherence
• Successful design and implementation of (optical) experiments requires knowledge of illuminating radiation.

• Beam characterization concerned with:
 o Transverse intensity profile
 o Transverse phase profile
 o Spatial coherence
 o Temporal pulse shape
 o Temporal coherence
Spatial Properties

Contour of equal phase – a diverging wave has a curved wavefront with a positive radius of curvature.

Diagram of a focussed gaussian beam.

Intensity profile widens with increasing distance.

Space-time coupling may be present and is potentially detrimental to experiments.
Wavefront Characterization

SWORD
Spectral Wavefront Optical Reconstruction by Diffraction

- Scan thin slit transverse to propagation direction.
- Retrieve phase profile from centroid position.
- Retrieve intensity profile from transmitted flux.

Images taken from [1]

Our technique measures the wavefront and coherence simultaneously.

Interference fringes from fully coherent phase-matched high harmonic source. Figure taken from [2]

- Coherence defined by correlation by E-field at two separate locations $<E_1E_2^*>$
- Normalised correlation strength is called Complex Degree of Coherence (γ) and is related to fringe visibility (ν) through:

$$\nu = \frac{2\sqrt{I_1\sqrt{I_2}}}{I_1+I_2} |\gamma|$$

Complete Characterisation

Scan **I**nterference **M**easurement **T**ransverse **A**nalyses of **R**adiation [4]

- Scan slit in vertical position – continuous change in pinhole separation.
- Incident beam intensity, phase and spatial coherence are retrieved from interference patterns.

Complete Characterisation

Scan slit in vertical position – continuous change in pinhole separation.

Incident beam intensity, phase and spatial coherence are retrieved from interference patterns.

Scanning

Interference

Measurement

for

Integrated

Transverse

Analysis

of

Radiation [4]

- Scan slit in vertical position – continuous change in pinhole separation.
- Incident beam intensity, phase and spatial coherence are retrieved from interference patterns.

Complete Characterisation

SCanning Interference Measurement for Integrated Transverse Analysis of Radiation [4]

- Scan slit in vertical position – continuous change in pinhole separation.
- Incident beam intensity, phase and spatial coherence are retrieved from interference patterns.

High Harmonic Generation

• Table-top source of EUV/soft x-ray radiation.
• Intense pulses from a (commercial) Ti-Sapphire laser are focused into a noble gas.
• Non-linear interaction produces a frequency comb extending to an abrupt cut-off.
• Odd multiples of laser frequency (harmonic order labelled by q).
Interference pattern from pinholes has the form:

\[I(x) = \varepsilon(x) \left[1 + V \cos(k_0 x + \varphi) \right] \]
\[\varepsilon(x) \propto (I_1 + I_2) \]

Interference Analysis

Interference pattern from pinholes has the form:

\[
I(x) = \varepsilon(x) [1 + V \cos(k_0 x + \varphi)]
\]

\[
\varepsilon(x) \propto (I_1 + I_2)
\]

Experimental Demonstration

Harmonic radiation (13 - 35nm)

- SCIMITAR used to characterize HHG from a gas cell.
- Driving laser pulse duration tuneable from 12-50 fs.
- Grating allows spectrally resolved characterization.
- Here we show results for 22fs pulses and harmonic orders up to q=33.

IR laser pulses (\(\lambda=800\text{nm}, E\sim300\mu\text{j}\))

~80mbar Argon.

\(~74\text{cm}\)

X-ray CCD

Grating

<1mm
Increasing photon energy

Interference

q=23

q=33
SCIMITAR - Intensity

$q=29$ Recovered Intensity Profile

- SCIMITAR data
- Gaussian fit

Intensity (arb.)
Position (μm)
Intensity Profiles with Gaussian fits

Intensity (arb.)

Position (µm)

q=23
q=25
q=27
q=29
q=31
q=33
Error bars designate 1-sigma confidence interval.
SCIMITAR - Phase

q=29 Recovered Phasefront

Equivalent to a wavefront with a 1.47m Radius of Curvature
Wavefront Curvature with Harmonic Order

Error bars designate 1-sigma confidence interval.

Measured source – slit distance.
q=29 |γ| with Pinhole Separation

FWHM of harmonic intensity

Magnitude of CCF

Pinhole Separation (µm)
SCIMITAR – Spatial Coherence

Magnitude of CCF vs Pinhole Separation (µm) for different values of q:
- q=23 (Blue stars)
- q=31 (Red stars)

David Lloyd 2013 International Workshop on EUV Soft X-ray sources
Summary

- SCIMITAR simultaneously retrieves:
 - Transverse intensity profile
 - Spatial phasefront
 - Spatial Coherence left-right of beam centre

- SCIMITAR is applicable to a wide range of light sources.
- We have demonstrated the technique by characterizing HHG.

Future Work

- Relate results to full theory of partially coherent diffraction (c.f Gaussian – Schell model).
Thank you

This work is funded by the Engineering and Physical Sciences Research Council, grant number EP/C005449
Incoherent Radiation

Two pinhole “interference” from an incoherent wavefront:

\[I(X) = I_1 \text{Sinc} \left(\frac{kXa}{2z} + \frac{a}{2} \frac{d\varphi}{dX} \right) + I_2 \text{Sinc} \left(\frac{kXa}{2z} + \frac{a}{2} \frac{d\varphi}{dX} \right) \]

• Gradient in phase extracted from patterns (similar to SWORD).
• Integrate across transverse direction to retrieve phasefront.
• In this scenario, there is no benefit of using SCIMITAR over SWORD.