Steady-State Microbunching for EUV

D. Ratner, A. Chao SLAC

June, 2015

Light from accelerators

Nearly 70 years of synchrotron radiation!

The steady work-horse

Super repetition rate, lower energy per pulse

The flashy new toy

High energy per pulse, low repetition rate

Modern light sources

High brightness

High repetition rate

SLAC

Can we have our cake and eat it?

Repetition rate

SLAC

Energy recovery linacs

Super-conducting linacs

FELs in rings, Oscillator FELs, ERLs, SC, etc...

The original: storage rings

Coherence in accelerators

Shot Noise

Number of electrons

SLAC

 $P_{rad}(/) \mu N_e$

Microbunching

 $P_{rad}(/) \mu N_e^2$

Microbunching in a ring

High brightness

High repetition rate

Steady-state microbunching SLAC **RF** "Buckets" **Fixed points** Stable region Separated by $\lambda_{\overline{opt}}$

Strong focusing "superperiod"

Limits to peak current High peak current → high average power

Normal operating mode

Coherent Synchrotron Radiation (CSR):

strong radiation at wavelengths longer than bunch

SLAO

Limits to peak current High peak current \rightarrow high average power

16

Low dispersion, SSMB: same peak current → same average current

Limits to peak current High peak current \rightarrow high average power

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 13, 104402 (2010)

Threshold studies of the microwave instability in electron storage rings

K. L. F. Bane, Y. Cai, and G. Stupakov

Low dispersion, SSMB: same peak current \rightarrow same average current

So what can we get?

Sample parameter set

EUV parameters	
Ring size (diameter)	30 m
Average current	1 A
Dispersion (α)	1.6 x 10 ⁻⁷ (R ₅₆ = 0.02 mm)
Beam energy	600 MeV
Beam energy spread (mod)	6 x 10 ⁻⁴
EUV power	4 kW

Proof-of-principle experiment

Challenges

- 1. Stable low alpha mode
- 2. High average current (instabilities)
- 3. High stored laser power

1000
10 kW
10 MW
3x10 ⁻⁶ (R ₅₆ = 0.4 mm)
1000 MeV
10 um
2.5 m

Where does this leave SSMB for EUV?

Plus side:

Potential for high average power in EUV

Based on mature technology (storage rings)

No need for high power beam dump

Down side:

Still very much R&D

Technical issues to resolve (laser/cavity power, ring)

Not going to solve EUV needs in the next 5 years

Hope to learn more soon!

And thanks to contributions from: X. Huang, Z. Huang, M. Levenson, R. Ruth, G. Stupakov, K. Tian

