

Bright and reliable Xe-based EUV source for metrology and inspection applications

Oleg Khodykin

Outline

- Introduction
- Xe LPP source
 - Requirements
 - Choice of architecture
 - Current status
 - Radiance
 - Collector lifetime
 - Laser optics protection
 - Chamber gas management
 - Closed loop Xe management system
 - Xe droplets subsystem

Conclusions

² Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

Latest reticle inspection solution

- EUV patterned masks and blanks
- Optical; Complex OPC, Quartz etch reticles
- For \geq 10nm Generation
- Practical sensitivity limited by edge roughness

Teron 6xx platform

Industry proven sensitivity for advanced optical and EUV Mask applications

³ Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

EUV reticle defect and inspection challenges

Pellicle transmission effects will narrow the wavelength choices

Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

7xx (EUV) program summary

- System Architecture defined
- EUV-specific large format image sensor designed and tested
- Optics concepts provide large field and high transmission
- Xe LPP source prototype shows required lifetime
- Ultra-clean vacuum prototypes tested
- Pilot production facility ready for build-out

710 System Concept – Cross-section

Rev 2 layout

Program ready for full-scale development

⁵ Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

Xe –based LPP source as bright and reliable solution

Actinic patterned mask inspection: source requirements

Property/parameter	Target Value	<u>Units</u>
Wavelength	13.5	nm, centroid
Pulse repetition rate	> 10	kHz
Pulse duration	> 10	ns, FWHM
Duty Cycle	> 95%	- minimum burst > 15 sec
Etendue	1.0 x 10 ⁻²	mm ² -sr
Radiance at I/F	> 20	W/mm ² -sr
(Averaged over etendue, lifetime)		2.2% band, pre-SPF
Footprint (m)	2.8W x 2.8D x 2.8H	
Availability	> 95%	
Cost of Service (annual)	< 10%	Relative to CoGs / Price
Cost of Operation (annual)	< 5%	

Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

Options – method of plasma generation

Method	DPP/LDP	LPP
Advantages	Simple for classical z-pinch, advantage quickly disappears with liquid metal delivery schemes and laser trigger/brightness	Clean (mass limited targets) Small plasma size
	optimization concepts	Scaling though repetition rate
Disadvantages	Erosion of near-plasma elements	
	Large plasma volume	
	Long plasma	
	Low repetition rate due to pulse power limitations	

Options – choice of target material

Target	Хе	Sn
Advantages	Noble gas	High CE (>3%)
	No deposition	
	Can be pumped by off-shell turbo pumps	
Disadvantages	Requires closed loop circulation	Deposition (collector lifetime)
30\$/liter)	30\$/liter)	Messy and dirty (especially in DPP/LDP configuration)
		Numerous issues with stable and reliable droplet generation
		Reacts with Ru to form alloys

Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

Solid Xenon Drum Target

- Key features of the drum target:
 - Cryogenically cooled to form Xenon ice on its surface
 - Rotating and moving up and down → laser hits fresh Xenon ice every time
- Xenon droplets are also in development
 - ¹⁰ Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

Conversion efficiency and plasma size

Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

EUV plasma image

¹² Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

EUV signal, plasma size, and radiance

¹³ Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

Primary collector damage mechanisms

Energetic ions/neutrals intrinsic to plasma formation

Sputtering of MLM by direct energetic ions has been recorded with >200nm/hours erosions rates at 26cm from plasma

Collector to plasma distance of 0.5-1m is required due to limit of clean pumping solutions. Sputtering of plasma facing components and chamber walls (too close in LPP 1 setup) & re-deposition of sputtered material on collector

Concept of shower head collector with Ar flow has been successfully tested

¹⁴ Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

Showerhead collector concept : erosion and deposition mitigation

¹⁵ Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

Showerhead collector: Initial proof-of-concept test

¹⁶ Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

Laser optics protection design and simulation of flow distribution

Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

Laser optics protection

Chamber gas distribution modeling

¹⁹ Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

EUV source collector lifetime (CLT) setup

²⁰ Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

CLT setup details

- Support collector 40-80 cm from plasma
- Advanced protection of collector and laser optic with distributed buffer gas flow
- Flexible debris mitigation capabilities

- Plasma –wall distance is > 0.5 m
- Up to 8 turbo-pumps can be installed with total throughput of 16slm
- IF interface ready
- Base pressure is at 2*10⁻⁸torr
- ²¹ Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

Prototype current status

Duration -120 hours

Effective duty cycle - 80% (limit with current target 92%, manual LN2 and Xe bottles replacement)

Radiance is at 8W/mm²sr @5kHz in free run mode

NO reflectivity degradation (within 0.5% accuracy)

²² Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

Xe recycling – development options

Parameter or Spec	Vendor A	Vendor B	Vendor C		
General					
Technology	Distillation and	Distillation	Multistep adsorption (room		
	adsorption		temperature, PSA/VSA)		
Main products	Rare Gases, Equipment	Rare Gases	Technical Gases		
Critical specification parameters					
Recirculation efficiency	>99%	95%	90%		
(RE>98%)					
Xenon Purity (99.999%)	99.999%	>99.999% at	>99.9%		
		95%RE			
Throughput	Demonstrated	Feasible	Up to half of required per		
			system		
Contaminations (spec)	Demonstrated	Feasible	TBD		
Cost of Recirculation (<\$0.6/liter)	<\$0.5/liter	>\$1.5/liter	TBD		
Footprint	<10m ²	50-100m ²	10m ²		
Height	<3m	4.5m	2m		

²³ Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

Xe recycle unit development: automatic control

Major subsystems operation has been demonstrated.

Full scale proto-unit has been built and tested.

Long term (days) operation in steady state regime.

Automated start-up and shut-down proof of principle experiments have been performed.

Full scale automation is in progress.

²⁴ Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

Xe droplets – not so fast and easy

²⁵ Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

Xe droplets- work in progress

Conclusions

- Required radiance has been demonstrated at 10kHz in steady state
- Further radiance scaling is possible through repetition rate.
- Major collector degradation mechanisms have been fully characterized.
- Effective debris mitigation strategies have been developed and tested.
- Full week of operation at 5kHz and 80%DC have been completed with NO collector reflectivity degradation (<0.5%) -> collector lifetime at 10kHz is more than 2000hours.
- Efficient Xe recirculation system has been developed with >99% capture rate Xe and >99.999% Xe purity, which enable cost effective source solution.
- Feasibility of stable Xe droplet delivery has been demonstrated.

²⁷ Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

Thank You