Public

ASML

EUVL Exposure Tools for HVM: Status and Outlook

Igor Fomenkov, ASML Fellow

ASML, Cymer, San Diego CA USA June 16th, 2016 | EUVL Workshop 2016, Berkeley, CA

Outline

- NXE3300 and NXE3350B progress and status
 - Roadmap, Layout, Performance
 - Imaging, Overlay, Defectivity
 - EUV pellicle status
- EUV source architecture and performance
- EUV source power scaling
 - EUV LPP technologies
 - Pre-pulse technology
 - EUV source drive laser
 - Droplet generator: performance, availability
 - Collector: protection, lifetime
- Summary

Public

Public

An **ASML** company

EUV technology roadmap, source architecture and performance

NXE extension roadmap to optimize capital efficiency

Public Slide 4

ASML

NXE:3350B: 2x overlay improvement at 16nm resolution Supporting 7nm logic, ~15nm DRAM requirements

ASML

Public Slide 5

Projection Optics Overlay set up Reticle Stage Set-up and modeling Higher lens transmission improved Better thermal control aberrations and distortion improvements increased servo bandwidth ASML Resolution 16nm **Off-Axis Illuminator FlexPupil Full wafer** <u><</u> 1.3nm NXE:3350B CDU SMASH sensor Wafer Stage < 1.5nm DCO Improved alignment Improved thermal **MMO** < 2.5nm sensor control Focus < 70nm _____ control **Spotless NXE** ≥ 125 Automated wafer table **Productivity WPH** cleaning Overlay **New UV level** Imaging/Focus Improved air mounts sensor Productivity

Public

ASML CYMER

An **ASML** company

Productivity, Availability, Source Power

>405k wafers exposed on NXE:3300B at customer sites ASML Currently 8 systems running in the field

Week

Demonstrated 85 WPH on NXE:3350B

Achieved with 125W configuration

Public Slide 8

ASML

NXE:3350B ATP test: 26x33mm², 96 fields, 20mJ/cm²

NXE:3350B: 125W settings qualified being implemented at the customer

ASML

Slide 9

Progress in source power supporting productivity roadmap to >125 WPH

Year

Public Slide 10

ASML

Three customer systems have achieved 80% availability **ASML**

Best four-week average on systems in 80W configuration

Public Slide 11

Uptime = productive time + standby time + engineering time SD: Scheduled down • USD: Unscheduled down

NXE:3300B multiple customers exposed >1,000 WPD; NXE:3350B exposed 1,368 WPD at ASML factory

Public Slide 12

Best single day results

• NXE:3350B with S2 source config. at ~80W EUV power.

• TPT job: 26x33mm field @ 20 mJ/cm², full wafer coverage (96 fields)

Best full week result

- WPD: maximum number of wafers exposed in a 24 hour period
- Each bar represents an individual system

Source power, availability, productivity summary

Status April 2016

ASML

Public Slide 13

Source power

- 80W configuration rolled out to customer sites, 125W configuration qualified
- 210W of dose-controlled EUV power demonstrated at ASML

Availability

- Three customer systems achieved more than 80% average availability over four weeks
- While overall average availability has increased, consistency still needs to be further improved

Productivity

- More than 1000 wafers per day exposed on NXE:3300B at customer sites, further improved to more than 1,350 wafers per day on NXE:3350B at ASML
- In a manufacturing readiness tests at a customer site an average of 800 wafers per day over two weeks was achieved

Public

ASML CYMER

An **ASML** company

Imaging, Overlay, Defectivity

EUV single exposure replaces immersion multiple patterning 2D-Metal at **32nm pitch** achieved with Quasar illumination

ASML

Quasar,

Pupil Fill ratio 20%

Public

Slide 15

Dose: 20 48nm pitch / 24nm CD

In cooperation with IMEC

NXE:3350B **imaging**: 16nm dense lines and 20nm iso space consistently achieve <1.0nm Full Wafer CDU

Tested with new ATP – 0mm field spacing and 15x9 grid

ASML

Public Slide 16

Progress resist materials: towards 16nm resolution at 125 WPH

19% EL, 4.4nm LWR @18.5mJ/cm². Also 13nm resolved with 17% EL and 4.2nm LWR @31mJ/cm²

Public Slide 17

ASML

NXE:3350B	16nm Horizontal Dense lines/spaces		13nm Horizontal Dense lines/spaces		
	Reference CAR	New formulation CAR	New Inpria resist (NTI non-CAR)	CAR	New Inpria resist (NTI non-CAR)
SEM image @BE/BF					
Dose	40 mJ/cm ²	25 mJ/cm ²	18.5 mJ/cm ²	~40 mJ/cm ²	31 mJ/cm ²
Exposure Latitude	16 %	16 %	19 %	-	17 %
DoF	145 nm	100 nm	125 nm	-	150 nm
LWR	4.6 nm	5.2 nm	4.4 nm	4.5 nm	4.2 nm
WR – Line Width Roughness	RE/RE - Rest Energy/Rest	Focus	Înpria		Înpria

LWR = Line Width Roughness DoF = Depth of Focus EL = Exposure Latitude BE/BF = Best Energy/Best Focus CAR = Chemically Amplified Resist

NXE:3350B overlay and focus performance

Well in specification due to HW improvement and new calibrations

Dedicated chuck overlay [nm]

Matched machine overlay [nm]

Focus uniformity [nm]

ASML

Public Slide 18

NXE:3350B matched machine overlay with NXT:1980Di <2.8nm

ASML

Public Slide 19

Front-side reticle defectivity: 10x reduction/year realized **ASML**

Public Slide 20

Key improvements

Optimization of flow around reticle stage using new hardware

Optimized maintenance sequence to flush out particles

Imaging, overlay, focus, defectivity summary Status April 2016

Public Slide 21

Imaging

- NXE:3350B imaging and overlay results for 7nm Logic are good
- 16 nm dense lines and 20 nm iso space consistently achieve fullwafer CDU below 1 nm

Overlay and focus

- NXE:3350B: 2x overlay improvement over NXE:3300B
- Matched-machine overlay below 2.5 nm, focus uniformity below 10 nm

Defectivity

• Front-side reticle defectivity: 10x reduction/year realized

Public

ASML

An ASML company

EUV Pellicle

ASML

Pellicle film must simultaneously fulfill all key requirements Polycrystalline silicon based films meet the key requirements

NXE Pellicles are being mounted and used in scanners

Slide 24

Prototype pellicle on early integration mounting tooling

Pellicle technology: durability proven to at least 125 W

Public Slide 25

ASML

Heat load test results

Film stack	Equivalent source power	Sample survivability	
Uncoated	40 W	9/9	
Uncoated	125 W	3/5	
Coated	125 W	33/33	

ASML pellicle integration Work Center at our Veldhoven production facilities

1000

Maximum pellicle temperature vs

* Duration of tests: equivalent with exposure of 1000 wafers

EUV source power scaling

CYMER An ASML company

ASML

Public

EUV Source Architecture, Sn LPP MOPA with Pre-pulse

Public Slide 27

ASML

EUV LPP Source Key Technologies

CO₂ Laser Power

High power drive laser

Conversion Efficiency

• Prepulse

EUV Power / Throughput

Optics Protection

(Debris Management)

3

- Collector protection by gas flow
- In-situ collector cleaning
- Collector capping layers
 Availability / CoO

Targeting Dynamics

ASML

Public Slide 28

- Target conditioning
- Focus Control
- x,y,z, E & t control

Dose Control / Yield

Source po Technology o	ower and availability dr levelopment work is ongoing t	rive productivity to improve all aspects	ASML Public Slide 29
	Productivity = Throughput(∞El	JV Power) × Availability	
EU	V Power= (CO_2 laser power × CE	× transmission)*(1-dose overhe	ead)
	Raw EUV pow	ver	
Source power	Drive laser power	from 20 to 40 kW	-
from 10 W to > 250 W	Conversion efficiency (CE)	from 1 to 6%	-
	Dose margin	from 50 to 10%	-
	Optical transmission	-	
Source availability	Automation		-
	Collector protection	-	
	Droplet generator reliability & lifeti	-	
	Drive laser reliability		_

EUV power scaling through 2016

EUV power ~ CO₂ power * Conversion Efficiency * (1-Dose Overhead)

ASML

Public Slide 30

Public

ASML CYMER

An **ASML** company

Pre-pulse technology

Conversion efficiency: Optimizing pre-pulse to create a

Target expansion fills main pulse beam waist

Public Slide 32

ASML

Increased conversion efficiency with Pre-pulse

ASML

Public

Slide 33

by optimization of target size, shape and density

Plasma scale length (Z) is the key to increase its volume **ASML**

Volume-distributed laser absorption enhances CO₂ laser deposition in plasma

Public Slide 34

Public

ASML CYMER An ASML company

EUV Source, Drive Laser Development Progress

CO₂ laser power scaling to scale EUV power Efficient CO₂ laser pulse amplification

ASML

Public Slide 36

Throughput, WPH	125	145	185
EUV power (W)	250	350	500
CO ₂ lase power (kW)	27	30	40

3300 CO₂ drive laser

CO₂ drive laser power scaling

Key technologies:

- 1. Drive laser with higher power capacity
- 2. Gain distribution inside amplification chain
- 3. Mode-matching during beam propagation
- 4. Isolation between amplifiers
- 5. Metrology and automation

Public Slide 37

ASML

Public

ASML CYMER

An **ASML** company

Droplet Generator

Droplet Generator, Principle of Operation

- Tin is loaded in a vessel & heated above melting point
- Pressure applied by an inert gas
- Tin flows through a filter prior to the nozzle
- Tin jet is modulated by mechanical vibrations

Short term droplet position stability $\sigma \sim 1 \mu m$

Public Slide 39

ASML

Forces on Droplets during EUV Generation

ASML

Public Slide 40

High EUV power at high repetition rates drives requirements for higher speed droplets with large space between droplets

High Speed Droplet Generation

Pressure (Speed) 3.5 MPa (26 m/s) 6.9 MPa (40 m/s) 13.8 MPa (58 m/s) 27.6 MPa (84 m/s) 41.4 MPa (104 m/s) 55.2 MPa (121 m/s)

Tin droplets at 80 kHz and at different applied pressures. Images taken at a distance of 200 mm from the nozzle ASML

Public Slide 41

5x improvement in Droplet Generator run time demonstrated

Data based on ASML internal testing; Field qualification started

Public Slide 42

ASML

Public

ASML CYMER

An **ASML** company

EUV Collector, Lifetime

EUV Collector: Normal Incidence

Public Slide 44

- Ellipsoidal design
 - Plasma at first focus
 - Power delivered to exposure tool at second focus (intermediate focus)
- 650 mm diameter
- Collection solid angle: 5 sr
- Average reflectivity: > 40%
- Wavelength matching across the entire collection area

5sr Normal Incidence Graded Multilayer Coated Collector

Collector Lifetime on NXE:3300 Sources UP2 configuration operating at 60-80W

- Collector lifetime ~3 months (~80Gp) on sources in the field
- Customer Demo (Q1'16): >100 Gpulse

Public Slide 46

ASML

250W feasibility proven without increase in protective Hydrogen flow ASML No rapid collector contamination, allowing stable droplets and >125 w/hr@20 mJ/cm²

Public Slide 47

In-situ collector cleaning Effectiveness of product configuration confirmed

Public Slide 48

Reflectivity restored within 0.8% of original Cleaning in off-line MOPA Prepulse development vessel Field collector cleaned in NXE:3300 source vessel test rig

Off-line cleaning using NXE:3300B source vessel with product configuration hardware

Summary: EUV readyness for volume manufacturing

- 8 NXE:3300B systems operational at customers
 - Completed qualification of five NXE:3350B, the 4th generation EUV exposure tool, one system qualified at 75 wph

ASML

Public Slide 49

- Multiple systems demonstrated >1,000 wafers per day capability, with one system exceeding 1,350 wpd
- 80W configuration operational in the field, 125W configuration qualification completed
- 80% source availability capability demonstrated
- Excellent NXE:3350B imaging and overlay performance at> 80W power
- Continuous progress in resist formulation promising towards enabling 13nm half pitch at high throughput

ASML

ASML

Public Slide 50

Summary

Significant progress in EUV power scaling,

- CE is up to 6 %
- Dose-controlled power is up to 210 W

CO₂ developments support EUV power scaling,

- Clean (spatial and temporal) amplification of short CO₂ laser pulse
- High power seed-table enables CO₂ laser power scaling

Significant progress made in Source Availability

- >80% source availability in the field
- >1000 hrs droplet generator runtime
- >100 Gp collector lifetime

Acknowledgements:

David Brandt, Daniel Brown, Rob Rafac, Alexander Schafgans, Yezheng Tao, Michael Purvis, Alex Ershov, Georgiy Vaschenko, Slava Rokitski, Michael Kats, Daniel Riggs, Wayne Dunstan, Michael Varga, Mathew Abraham, Matthew Graham

Cymer LLC, 17075 Thornmint Ct, San Diego, CA 92127 USA

Rudy Peeters, Daniel Smith, Uwe Stamm, Sjoerd Lok, Arthur Minnaert, Martijn van Noordenburg, Joerg Mallmann, David Ockwell, Henk Meijer, Judon Stoeldraijer, Christian Wagner, Carmen Zoldesi, Eelco van Setten, Jo Finders, Koen de Peuter, Chris de Ruijter, Milos Popadic, Roger Huang, Roderik van Es, Marcel Beckers, Hans Meiling

ASML Netherlands B.V., De Run 6501, 5504 DR Veldhoven, The Netherlands

Public Slide 51

Acknowledgements:

IOF

TRO innovation for life

TRUMPF

Public Slide 52

ASML

An **ASML** company