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EUV technology roadmap, source architecture and performance
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NXE extension roadmap to optimize capital efficiency
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NXE:3350B: 2x overlay improvement at 16nm resolution
Supporting 7nm logic, ~15nm DRAM requirements Public
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Productivity, Availability, Source Power
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>405k wafers exposed on NXE:3300B at customer sites
Currently 8 systems running in the field
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Demonstrated 85 WPH on NXE:3350B
Achieved with 125W configuration
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NXE:3300B at customers

NXE:3350B

ASML factory
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NXE:3350B ATP test: 26x33mm2, 96 fields, 20mJ/cm2



NXE:3350B: 125W settings qualified 
being implemented at the customer

Mean pulse energy at 

Intermediate Focus ~3mJ

EUV power at 

Intermediate Focus 125W

Energy control Overhead ~20%
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Progress in source power supporting productivity 

roadmap to >125 WPH
Public
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Three customer systems have achieved 80% availability
Best four-week average on systems in 80W configuration Slide 11
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Uptime = productive time + standby time + engineering time

SD: Scheduled down •  USD: Unscheduled down

+X% indicates change from Q4 2015

+15% +5% +13%+5%
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NXE:3300B multiple customers exposed >1,000 WPD;
NXE:3350B exposed 1,368 WPD at ASML factory

• WPD: maximum number of wafers exposed in a 24 hour period

• Each bar represents an individual system

NXE:3350B at ASML factory

• NXE:3350B with S2 source config. at ~80W EUV power.

• TPT job: 26x33mm field @ 20 mJ/cm2, full wafer coverage (96 fields)

NXE:3300B at customers

Best full week result
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Source power, availability, productivity summary
Status April 2016

• 80W configuration rolled out to customer sites, 125W configuration 
qualified

• 210W of dose-controlled EUV power demonstrated at ASML

Source power

• Three customer systems achieved more than 80% average 
availability over four weeks

• While overall average availability has increased, consistency still 
needs to be further improved

Availability

• More than 1000 wafers per day exposed on NXE:3300B at customer 
sites, further improved to more than 1,350 wafers per day on 
NXE:3350B at ASML

• In a manufacturing readiness tests at a customer site an average of 
800 wafers per day over two weeks was achieved

Productivity

Slide 13



Imaging, Overlay, Defectivity
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ArFi LE3

(triple patterning)
EUV Single Exposure

Quasar illumination

Pupil Fill ratio 20%

In cooperation with IMEC

Dose: 20 mJ/cm2
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48nm pitch / 24nm CD Quasar, 

Pupil Fill ratio 20%

32nm pitch / 16nm CD

EUV single exposure replaces immersion multiple patterning
2D-Metal at 32nm pitch achieved with Quasar illumination



NXE:3350B imaging: 16nm dense lines and 20nm iso space 

consistently achieve <1.0nm Full Wafer CDU
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Tested with new ATP – 0mm field spacing and 15x9 grid
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Progress resist materials: towards 16nm resolution at 125 WPH
19% EL, 4.4nm LWR @18.5mJ/cm2. Also 13nm resolved with 17% EL and 4.2nm LWR @31mJ/cm2

NXE:3350B 16nm Horizontal Dense lines/spaces 13nm Horizontal Dense lines/spaces

Reference CAR

New formulation 

CAR

New Inpria resist 

(NTI non-CAR) CAR

New Inpria resist 

(NTI non-CAR)

SEM image 

@BE/BF

Dose 40 mJ/cm2 25 mJ/cm2 18.5 mJ/cm2 ~40 mJ/cm2 31 mJ/cm2

Exposure Latitude 16 % 16 % 19 % - 17 %

DoF 145 nm 100 nm 125 nm - 150 nm

LWR 4.6 nm 5.2 nm 4.4 nm 4.5 nm 4.2 nm

LWR = Line Width Roughness

DoF = Depth of Focus

EL = Exposure Latitude

BE/BF = Best Energy/Best Focus

CAR = Chemically Amplified Resist
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NXE:3350B overlay and focus performance
Well in specification due to HW improvement and new calibrations

Dedicated chuck overlay [nm] Matched machine overlay [nm] Focus uniformity [nm]

Slide 18

Public



NXE:3350B matched machine overlay with NXT:1980Di <2.8nm
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Front-side reticle defectivity: 10x reduction/year realized
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Imaging, overlay, focus, defectivity summary
Status April 2016

• NXE:3350B imaging and overlay results for 7nm Logic are good

• 16 nm dense lines and 20 nm iso space consistently achieve full-
wafer CDU below 1 nm

Imaging

• NXE:3350B: 2x overlay improvement over NXE:3300B

• Matched-machine overlay below 2.5 nm, focus uniformity below 
10 nm

Overlay and focus

• Front-side reticle defectivity: 10x reduction/year realized

Defectivity

Slide 21



EUV Pellicle
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Pellicle film must simultaneously fulfill all key requirements
Polycrystalline silicon based films meet the key requirements

Scanner (imaging) performance

defect free

high 
transmission

low 
transmission 
nonuniformity

Pellicle robustness

chemical

resistance

(EUV+H2)

mechanical

compatibility

thermal

resistance

Slide 23
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NXE Pellicles are being mounted and used in scanners

Prototype pellicle on early integration mounting tooling



200

400

600

800

1000

1200

1400

0 50 100 150 200 250

T
e

m
p

e
ra

tu
re

 [
C

]

Source power [W]

Maximum pellicle temperature vs 

source power (calculated) 

Reference (emiss. ≤0.02)

Coated (emiss. 0.24)

Film stack
Equivalent 
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survivability
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Heat load test results

Pellicle technology: durability proven to at least 125 W 

ASML pellicle 

integration Work 

Center at our 

Veldhoven

production 

facilities
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* Duration of tests: equivalent with exposure of 1000 wafers



EUV source power scaling 
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EUV Source Architecture, Sn LPP MOPA with Pre-pulse

Source Pedestal
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EUV LPP Source Key Technologies
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Source power and availability drive productivity

Productivity = Throughput(EUV Power)  Availability

Source power

from 10 W to > 
250 W 

Drive laser power                                       from 20 to 40 kW

Conversion efficiency (CE)                         from 1 to 6%

Dose margin                                               from 50 to 10%

Optical transmission                                   

Source 
availability

Drive laser reliability

Droplet generator reliability & lifetime

Automation

Collector protection

EUV Power= (CO2 laser power  CE  transmission)*(1-dose overhead)

Raw EUV power

Technology development work is ongoing to improve all aspects 
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EUV power scaling through 2016

EUV power ~ CO2 power * Conversion Efficiency * (1-Dose Overhead)
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Pre-pulse technology
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Conversion efficiency: Optimizing pre-pulse to create a 

more efficient targetTarget expansion fills main pulse beam waist

Prepulse
(low energy)

Mainpulse
(high energy)

Target shape changes 

from droplet to disk
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Increased conversion efficiency with Pre-pulse

no PP       small disk      large disk     partial-cloud     cloud 
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EUV CE ~6% demonstrated on development platforms
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Plasma scale length (Z) is the key to increase its volume 
Volume-distributed laser absorption enhances CO2 laser deposition in plasma

Schematic diagram of traditional LPP Hydrodynamic simulation of CO2 Sn LPP

SPIE 2016, 97760K-1, Michael Purvis 

“Advances in predictive plasma formation modelling”
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EUV Source, Drive Laser Development Progress
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CO2 laser power scaling to scale EUV power
Efficient CO2 laser pulse amplification

3300 CO2 drive laser

Throughput, WPH 125 145 185

EUV power (W) 250 350 500

CO2 lase power (kW) 27 30 40

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250

L
a
s
e
r 

p
o

w
e
r 

(W
)

Laser pulse duration (ns)



Slide 37

Public

CO2 drive laser power scaling   

Key technologies:

1. Drive laser with higher power capacity 

2. Gain distribution inside amplification chain

3. Mode-matching during beam propagation

4. Isolation between amplifiers

5. Metrology and automation
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Droplet Generator
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Droplet Generator, Principle of Operation

• Tin is loaded in a vessel & heated above melting point

• Pressure applied by an inert gas

• Tin flows through a filter prior to the nozzle

• Tin jet is modulated by mechanical vibrations

Nozzle

Filter

ModulatorGas

Sn
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140 m 50 m 30 m
Pressure:  1005 psi 
Frequency:  30 kHz 
Diameter:  37 µm 
Distance:  1357 µm 
Velocity:  40.7 m/s 

  

Pressure:  1025 psi 
Frequency:  50 kHz 
Diameter:  31 µm 
Distance:  821 µm 
Velocity:  41.1 m/s 

  

Pressure:  1025 psi 
Frequency:  500 kHz 
Diameter:  14 µm 
Distance:  82 µm 
Velocity:  40.8 m/s 

  

Pressure:  1005 psi 
Frequency:  1706 kHz 
Diameter:  9 µm 
Distance:  24 µm 
Velocity:  41.1 m/s 

  

Fig. 1. Images of tin droplets obtained with a 5.5 μm nozzle. The images on the left were obtained in 

frequency modulation regime; the image on the right – with a simple sine wave signal. The images 

were taken at 300 mm distance from the nozzle.  

Short term droplet position stability σ~1m

16 m



Slide 40

Public

Forces on Droplets during EUV Generation

High EUV power at high repetition rates drives requirements for 

higher speed droplets with large space between droplets
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High Speed Droplet Generation

Tin droplets at 80 kHz and at different applied pressures.

Images taken at a distance of 200 mm from the nozzle

Pressure (Speed)

3.5 MPa (26 m/s)

6.9 MPa (40 m/s)

13.8 MPa (58 m/s)

27.6 MPa (84 m/s)

41.4 MPa (104 m/s)

55.2 MPa (121 m/s)

1.5 mm
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5x improvement in Droplet Generator run time demonstrated
Data based on ASML internal testing; Field qualification started

Bundle 1 DGen (field avg.)

Bundle II DGen (field avg.)

Bundle III DGen (ASML internal)

Bundle III DGen (Beta Test)
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Field Droplet Generator still 

operational  >350hrs

Droplet Generator still 

operational >1000hrs



EUV Collector, Lifetime
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EUV Collector: Normal Incidence

• Ellipsoidal design

• Plasma at first focus

• Power delivered to exposure tool 
at second focus (intermediate 
focus)

• 650 mm diameter

• Collection solid angle: 5 sr

• Average reflectivity: > 40%

• Wavelength matching across the 
entire collection area 5sr Normal Incidence Graded

Multilayer Coated Collector
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Collector Protection

Sn droplet / 

plasma

H2 flow

Reaction of H radicals with Sn 

to form SnH4, which can be 

pumped away.

Sn (s) + 4H (g)  SnH4 (g)

• Hydrogen buffer gas causes 

deceleration of ions

• Hydrogen flow away from collector 

reduces atomic tin deposition rate

Laser beam

IF

Sn 

catcher

DG

EUV collector

Temperature controlled

• Vessel with vacuum pumping to 

remove hot gas and tin vapor

• Internal hardware to collect micro 

particles
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Collector Lifetime on NXE:3300 Sources
UP2 configuration operating at 60-80W

Transmission loss ~0.5%/Gp

• Collector lifetime ~3 months 

(~80Gp) on sources in the field

Transmission loss ~0.6%/Gp

• Customer Demo (Q1’16): >100 Gpulse
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250W feasibility proven without increase in protective Hydrogen flow
No rapid collector contamination, allowing stable droplets and >125 w/hr@20 mJ/cm²

~200W dose controlled power
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In-situ collector cleaning
Effectiveness of product configuration confirmed

Off-line cleaning using NXE:3300B source 

vessel with product configuration hardware
Reflectivity restored within 0.8% of original 

Cleaning in off-line MOPA Prepulse development vessel

Field collector 

cleaned in 

NXE:3300 source 

vessel test rig 

Start End

Start End
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Summary: EUV readyness for volume manufacturing

• 80% source availability capability demonstrated

• Multiple systems demonstrated >1,000 wafers per day 

capability, with one system exceeding 1,350 wpd

• Completed qualification of five NXE:3350B, the 4th generation 

EUV exposure tool, one system qualified at 75 wph  

• 80W configuration operational in the field, 125W 

configuration qualification completed

• Excellent NXE:3350B imaging and overlay 

performance at> 80W power

• Continuous progress in resist formulation promising towards 

enabling 13nm half pitch at high throughput

• 8 NXE:3300B systems operational at customers
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Significant progress in EUV power scaling,

- CE is up to 6 %

- Dose-controlled power is up to 210 W

CO2 developments support EUV power scaling,

- Clean (spatial and temporal) amplification of short CO2 laser pulse

- High power seed-table enables CO2 laser power scaling

Significant progress made in Source Availability

- >80% source availability in the field

- >1000 hrs droplet generator runtime

- >100 Gp collector lifetime

Public
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