Atomic-scale investigations
formation and aging processes of EUV optics

Joost Frenken, *ARCNL, Amsterdam, The Netherlands*

- Brief introduction of ARCNL
- Special Scanning Tunneling Microscopy
- Movies: *live* formation of Si-Mo interfaces
 live kinetic roughening of Mo film
 live ion erosion
Advanced Research Center for Nanolithography

MISSION
The research of ARCNL focuses on fundamental physics in the context of technologies for (nano)-lithography, primarily for the semiconductor industry.

PARTNERS
Foundation for Fundamental Research on Matter (FOM/NWO), University of Amsterdam, VU University Amsterdam, ASML

LOCATION
Amsterdam Science Park, The Netherlands
Scientific program

EUV Generation and Imaging
Stefan Witte & Kjeld Eikema

EUV Targets
Paul Planken

EUV Plasma Dynamics
Ronnie Hoekstra, Wim Ubachs & Oscar Versolato

Atomic Plasma Processes
Oscar Versolato

EUV Plasma theory
Collaborative structure (Jan van Dijk, TU/e)

Nanolayers
Joost Frenken

Nanophotochemistry
Fred Brouwer

EUV Photoresists
Sonia Castellanos Ortega

AMOLF-ARCNLI group
Niklas Ottosson & Huib Bakker

HHG of EUV
Stefan Witte & Kjeld Eikema

Accelerator-based EUV
Coordinator: Ronnie Hoekstra
Temporary labs and offices

- **Temporary laboratory**
 - 600 m2 lab space
 - In use since mid October 2014

- **Temporary offices**
 - (capacity 96 people)
 - In use since end of December 2014

- **Long-term housing (Matrix-VII)** in preparation (complete in 2018)
Interface formation in EUV-optics

Roughness + interface film

Why rough and graded!? Reduces reflectivity
Principle of the STM

STM = ‘Scanning Tunneling Microscope’
Depo-STM: in-situ growth / ion erosion

Marcel Rost and Vincent Fokkema

Azimuth

Polar angle
Live growth: Mo deposition on Si(111)

Initial stages: *silicide formation*: MoSi$_2$

30 nm x 30 nm 1.7 s/frame
0-0.1 nm Mo
Clusters: number statistics

2 or 3 Mo atoms required to form stable MoSi$_2$ cluster; single Mo atoms remain ‘invisible’, diffusing rapidly within single 7x7 unit cell
Clusters: spatial statistics

Original image

Autocorrelation function:

\[C_A(\bar{r}, t) = \langle h(\bar{x}, t) h(\bar{x} + \bar{r}, t) \rangle \]

Conclusion:
1 cluster per 7x7 unit cell
=> diffusion barrier for Mo
Mo and MoSi$_2$ don’t wet Si(111)

Surface free energies:
\[\gamma_{Si} < \gamma_{MoSi_2} < \gamma_{Mo} \]

Similar to scenario for Ni:
=> silicide islands
with Si skin
(diffusion of Si)

Van Loenen et al.
Mo and MoSi$_2$ don’t wet Si, but Si wets them

Surface free energies:
\[\gamma_{Si} < \gamma_{MoSi_2} < \gamma_{Mo} \]

Mo on Si:
=> silicide islands
 with Si skin
 Mo film only after closure of silicide

Si on Mo:
=> thin silicide film
 Si overgrows it quickly
Kinetic roughening of Mo on Si

Later stages: polycrystalline Mo growth

75 nm x 55 nm
0.2-5 nm Mo
Mo on Si: roughening statistics

\[w(t) = \left\langle \left[h(\bar{x},t)\right]^2 \right\rangle \] \\
\text{rms height variation}

\[C_A(\bar{r},t) = \left\langle h(\bar{x},t)h(\bar{x} + \bar{r},t) \right\rangle \] \\
autocorrelation function

\[C_H(\bar{r},t) = \left\langle \left[h(\bar{x},t) - h(\bar{x} + \bar{r},t)\right]^2 \right\rangle \] \\
height correlation function

\[
C_H(\bar{r},t) \propto r^{2H} \quad r \ll \xi
\]

\[
C_H(\bar{r},t) = 2w^2 \quad r \gg \xi
\]

Scaling for kinetic roughening:

\[\xi(t) \propto t^{1/z} \] \\
correlation length

\[w(t) \propto t^\beta \] \\
roughness
Mo on Si: roughening statistics

![Graph showing height-difference correlation vs. correlation distance](image)

- Height-difference correlation [nm2]
- Correlation distance [nm]
- Curves for different $	au$ values:
 - $	au = 4.0$ nm
 - $	au = 3.0$ nm
 - $	au = 1.0$ nm
 - $	au = 0.5$ nm
 - $	au = 0.1$ nm

- Theoretical expressions:
 - $2w^2$
 - $2w^2(1-e^{-1})$
 - $\sim r^{2H}$

- Length scale ξ
Mo on Si: roughening statistics

Exponents β and $1/z$ match Grain-Boundary Crossing model

$\beta = 0.49 \pm 0.02$

$1/z = 0.34 \pm 0.02$
Live erosion: 800 eV Ar⁺ => Si(111) 7x7

Conditions:

- T = 293 K
- 25 x 25 x 0.2 nm³
- 2 V x 200 pA
- 10 s / frame
- 416 frames
- Polar angle: 75°
- 1-3 ions per frame
Individual impact events

Frame i

\[F(i + 1) - F(i) \]

Frame $i + 1$
Erosion rate proportional to damage

- Removal rate is proportional to the damage already done
- Perfect Si(111)-7×7 is almost perfectly reflective for 800 eV Ar⁺ at 75°
Ion smoothening of deposited Mo

grazing incidence: ion ‘shaving’

Grazing incidence Ar⁺

Mo
Si
MoₓSiᵧ

Shaving:
Scattering, Sputtering & Shadowing → Smoothening

Marcel Rost
Vincent Fokkema

95 nm x 95 nm x 2.5 nm
Advanced Research Center for Nanolithography (ARCNL)

www.ARCNL.nl

MoSi2
Si
MoSi2
Si
Mo

ARCNL