Metal Oxide EUV Photoresists for N7 Relevant Patterns

Stephen T. Meyers, Andrew Grenville

2016 International Workshop on EUV Lithography

Resists Designed for EUV Lithography

Baseline MOx Resist Platform

- SnO_x based resist ۲
- E_{size} @ 16nm HP: ~37 mJ/cm² ٠
 - EL_{max}: 29% —
 - Resist thickness ~18nm
- Formulation scaled to multi-gallon batches, installed • on multiple tracks/fabs enabling critical learning:
 - Track Compatibility
 - Stability
 - Filtration

đ

- Defectivity
- **CDSEM Metrology**

imec

OPC / Litho modeling

MOx Resists Fab Acceptance

- Matrix Metal: Sn
 - Track / Etch Cross Contamination
 - EUV Outgassing

All tested trace metals < 10 ppb

Formulation:	YF-Series					
Batch:	Batch #1		Batch #2		Batch #3	
Element	ppb	ppb	ppb	ppb	ppb	ppb
Ag	<10	<10	<10	<10	<10	<10
AI	<10	<10	<10	<10	<10	<10
As	<10	<10	<10	<10	<10	<10
Au	<10	<10	<10	<10	<10	<10
Ba	<10	<10	<10	<10	<10	<10
Ca	<10	<10	<10	<10	<10	<10
Cd	<10	<10	<10	<10	<10	<10
Co	<10	<10	<10	<10	<10	<10
Cr	<10	<10	<10	<10	<10	<10
Cu	<10	<10	<10	<10	<10	<10
Fe	<10	<10	<10	<10	<10	<10
к	<10	<10	<10	<10	<10	<10
Li	<10	<10	<10	<10	<10	<10
Mg	<10	<10	<10	<10	<10	<10
Mn	<10	<10	<10	<10	<10	<10
Na	<10	<10	<10	<10	<10	<10
Ni	<10	<10	<10	<10	<10	<10
Pd	<10	<10	<10	<10	<10	<10
Sn	matrix	matrix	matrix	matrix	matrix	matrix
Ti	<10	<10	<10	<10	<10	<10
v	<10	<10	<10	<10	<10	<10
w	<10	<10	<10	<10	<10	<10
Zn	<10	<10	<10	<10	<10	<10

- Trace Metal Impurities
 - Developed ICP-MS methods to eliminate mass interferences from Sn
 - Enabling Lower Detection Limits
 - Example: isotope overlap between ¹¹²Sn and ¹¹²Cd
 - Demonstrated multiple large batches with no detectable trace metals

MOx Resist Integration: IMEC iN7 Metal 2 Block Layer

CD-X Target 21nm ± 10% Dose to size: 49mJ/cm² Customized illumination El_{max}:22%, DOF @ 10%EL:118 nm X-Wafer CDU 3σ: 1.8nm

Conventional approach using a tri-layer system – 4 ETCH steps TiN etch SOC etch SOG removal **SOC Strip** SOG etch exposure Novel approach using INPRIA resist directly on SOC – 2 ETCH steps SOC etch exposure ✓ One less spin-on layer (SOG) ✓ Etch simplification Simplified Etch Process ✓ CoO reduction

MOx Resist Integration: IMEC iN7 Metal 2 Block Layer

De Simone, D. et al. Proc. SPIE, 9776-11 (2016)

Resists Designed for EUV Lithography

EUV Photon Shot Noise

- Consider contacts/pillars
- Photon shot noise \rightarrow dose fluctuation from contact to contact
- Billions of contacts per die: need to consider 7σ variation

25 mJ/cm²

Photon Density

Poisson Distribution of Photons per Contact

Absorbed Photon Shot Noise

- Variation in effective dose due to statistical distribution of absorbed photons
- When too few absorbed, contact/pillar will not form
- Exposure latitude of resist process must accommodate this variation

Resist	Absorbance (1/µm)	Thickness (nm)
Inpria	20	25
CAR	5	25

Poisson Distribution of Absorbed Photons

Stochastic Material Composition: CAR

Înpria

Assume: 40 nm FT, 0.2 PAG/nm³, 0.04 Quencher/nm³

Stochastic Material Comparison

- Inpria materials have lower initial stochastic variability
 - No minor components
 - Small, uniform building blocks (~1.4 nm dia)
 - High concentration of bound photoactive centers
- Higher Homogeneity

Inpria MOx

CAR

Resist Modeling

- Initial Inpria resist model created using PROLITH™
 - Based on physical measurements and CDSEM of pillars & lines
 - Baseline resist
- 20,000 contacts simulated
 - 18P36, NA 0.33, Quad30

Resist	Thickness (nm)	Dose (mJ/cm²)
Inpria	18	40
CAR1	40	36
CAR2	40	52

imec

KLA Tencor

Onpria

Count

Resists Designed for EUV Lithography

Resist Performance Improvements Toward N7 Targets

- Targeted design changes reduce D_{gel} while preserving contrast
- Multiple formulations tested with improved Esize vs LWR relative to baseline

16nm HP below 20 mJ/cm²

14 mJ/cm² **24 mJ/cm² 18 mJ/cm²** 5.1 nm LWR **3.6 nm LWR 4.2 nm LWR** 43291 CD = 15.9 nm CD = 15.9 nm CD = 16.0 nm

Integrating New Formulations in IMEC M2 Process

NXE3300 – NO RETICLE BIAS, CD-X 21nm ± 10%

Beyond N7: 13nm LS @ 26 mJ/cm² w/ Process Window

Sampling baseline resist for process development and fab integration

High absorbance and small photoactive building blocks lower initial stochastic variability

Improved dose vs LWR: < 20 mJ/cm² at N7 pitches

MOx Outlook

- Low photon / material stochastic variability
- Competitive LWR-Dose

But what are the real limits?

Better MOx Modeling \rightarrow parameterize descriptive understanding of MOx resists

THANK YOU

... and all of our partners

