Development of a collective Thomson scattering system for high-Z plasmas for Beyond-EUV lithography

Y. Sato1*, K. Tomita1, T. Eguchi1, S. Tsukiyama1, K. Uchino1
1Interdisciplinary Graduate School of Engineering and Sciences, Kyushu University, Kasuga, Fukuoka, Japan
E-mail: 3ES16011G@s.kyushu-u.ac.jp

Background

Laser Thomson Scattering (LTS)

In the case of EUV plasma

In the case of high-Z plasma

• Ion term
 • Intensity
 • Spectral width
 • Spectral shape
• Electron term
 • Spectral width
 • Spectral shape

Measure \(n_e, T_e, Z \) from two terms

Expected parameters of the high-Z plasmas

Expected ion term spectra:

- Sn: \(n_e \approx 0.2 \times 10^{23} \text{ m}^{-3}, T_e \approx 30 \text{ eV}, Z \approx 11 \)
- Bi: \(n_e \approx 1 \times 10^{23} \text{ m}^{-3}, T_e \approx 100 \text{ eV}, Z \approx 20 \)

Results and Discussion

Conclusion

For development of the new LTS diagnostic systems for next generation laser-produced light source plasmas, we are planning to observe the ion term and the electron term simultaneously. Considering \(S_e \), clear electron terms are expected only in the range of \(1 < \alpha < 2.5 \).

By changing the scattering angle, it is possible to control a parameter in 1-2.5 for plasmas parameters, which are expected for laser-produced light sources.

For the preliminary experiment, we measured \(n_e \) and \(T_e \) of laser produce plasmas produced in the air. Now we are trying to diagnose he discharge plasmas.