EUVL: Challenges to Manufacturing Insertion

Obert R Wood II

International Workshop on EUV Lithography CXRO, LBNL, Berkeley, California 14 June 2017

 EUV Critical Issues, as identified & ranked at International Symposia on EUV Lithography, were:

2013 / 22 hp 1. Long-term reliable source operatio a. 125 W at IF in 2014 b. 250 W in 2015	 Reliable source operation with > 85% availability Expectation of 1500 average wafers per day in 2016 	2015 / 16 hp ole source operation with > 85% ability ectation of 1500 average wafers per in 2016
2. Mask yield & defect inspection/rev infrastructure	 Resist resolution, sensitivity & LER met simultaneously Increased focus needed on manufacturing performance (defectivity, pattern collapse,) 	t resolution, sensitivity & LER met taneously eased focus needed on nufacturing perforrmance fectivity, pattern collapse,)
 4. Keeping mask defect free Availability of pellicle mtg HVM Minimize defect adders during u 4. Resist resolution, sensitivity & LE simultaneously 	 3. Mask yield & defect inspection/review infrastructure Sustainability of mask tool supply chain remains critical 4. Keeping mask defect free (by EUV pellicle) Pellicle demonstration in the field (on NXE3300) 	yield & defect inspection/review structure tainability of mask tool supply chain ains critical bing mask defect free (by EUV cle) icle demonstration in the field (on 33300)

 7 nm node HVM Source Power Requirement: 205 W at IF (~1000 wafers per day/scanner @ Product Dose)

Ref: A. Schafgans, et al., "Scaling LPP EUV sources to meet high volume manufacturing requirements," SPIE Advanced Lithography, 10143-51, San Jose, CA, 1 Mar 2017. 2017 EUVL Workshop

7 nm node Source/Scanner HVM Availability Requirement: >94%

NXE:3350 combined system availability

- Introduction of NXE:3350 reduced XLD
- NXE:3350 combined availability exceeding 75% by end of 2016
- System availability expectations continue to increase

Ref: B. Turkot, "EUV lithography readiness for high volume manufacturing," SPIE Advanced Lithography, 10143-1 San Jose, CA, 27 Feb. 2107.

Resist Resolution & LWR/LCDU

- 7 nm node HVM Resist Resolution & LWR/LCDU Requirements:
 - 18 nm HP Lines & Spaces & 2.0 3σ LWR (post etch)
 - 20 nm HP Dense Contact Holes & 3.0 3σ LCDU

	13nm HP Dense L/S	20 nm HP Contacts
NXE:3400 Scanner Leaf-shape Dipole Y & Quasar illumination 20% Pupil Fill Ratio		
Dose	34 mJ/cm ²	NA
LWR/LCDU	3.8 nm (3σ)	3.0 nm (3σ)

Ref: O. Yildirim, et al., "Improvements in resist performance towards EUV HVM," SPIE Advanced Lithography, 10143-22, San Jose, CA, 1 Mar. 2017. Ref: M. vd Kerkhof, "Enabling sub-10 nm node lithography: presenting the NXE:3400B scanner," SPIE Advanced Lithography, 10143-9, San Jose, CA, 28 Feb. 2017.

7 nm node HVM Resist LWR Requirement: ~2.0 nm Post Etch

Ref: M. Neisser, et al., "Novel resist approaches to enable EUV lithography in high volume manufacturing extensions to future nodes," Proc. SPIE <u>9422</u>, 9422OL (2015) 2017 EUVL Workshop

Mask Blank Defectivity Trend

- 7 nm node HVM Mask Blank Defectivity Requirements:
 - Large defects (> 60 nm SiO₂): zero
 - Total defects (> 23 nm SEVD): low single digits

Ref: S.-S. Kim, "Progress in EUV lithography toward manufacturing," SPIE Advanced Lithography," 10143-2, San Jose, CA, 27 Feb. 2017.

Mask Blank Defect Mitigation

- 7 nm node HVM Mask Blank Defectivity Requirements:
 - Large defects (> 60 nm SiO₂): zero
 - Total defects (> 23 nm SEVD): number depends on mask pattern density

Ref: J. Qi, et al., "Defect avoidance for EUV photomask readiness at the 7 nm node," Photomask Japan 2016. 2017 EUVL Workshop

Ref: O.R. Wood, et al., "Impact of frequent particle removal on EUV mask lifetime," International EUVL Symposium, Kobe, Japan, 19 Oct. 2010.

Ref: B. Turkot, "EUV progress towards HVM readiness," SPIE Advanced Lithography, San Jose, California, 22 Feb 2016

Scanner particle adder rate is still too high for HVM without pellicle. Pellicle will be required!

Photo of Full-Field Poly-Si Pellicle

T = 85% (single pass) Ref: C. Zoldesi, "EUV pellicles is ready for next step: industrialization," SPIE Advanced Lithography, San Jose, CA, 26 Feb 2015 2017 EUVL Workshop

Current Status of EUV Critical Issues

- Exposure tools (light source, optics, focus & alignment systems)
 Improvement still needed in power & reliability
- Resists
- Adequate for 7 nm, but better LCDU required for future nodes
- Masks

Actinic inspection tools need to be brought to maturity and deployed

- Process control
- EUV-specific issues have been identified and solutions are being implemented

- For the first time ever the EUV critical issues identified and ranked yearly at the International Symposia on EUV Lithography are not gating the insertion of EUV into manufacturing!
- The bulk of EUV R&D should now be focused on the three remaining EUV issues that need additional work:
 - Mitigating Stochastic Effects (near term)
 - Compensating for EUV Mask 3D Effects (near term using SMO, slightly longer term – using advanced EUV mask stacks)
 - Imaging with High-NA EUV Projection Optics (longer term)

Impact of Stochastic Effects

- Higher LER & LCDU, increased local top loss, & reduced resolution
 - Micro bridges & line breaks (L/S patterning)
 - Missing or "kissing" contacts (C/H patterning)

Results from the numerical modelling of 10 million 30 nm CD vias, showing how vias with a normal distribution of CDs (a) will be mapped to a CD distribution with an asymmetric tail at low doses (c) using a transfer function based on a simple threshold model for the resist (b).

Ref: R. Bristol & M. Krysak, Proc. SPIE 10143 (2017) 101430Z

- Higher minimum k₁ value for EUV printing than for 193 nm printing
- Limit to benefit of higher image contrast available with high NA optics

Ref: T. Brunner, et al., Proc. SPIE 10143 (2017) 101431E

Mitigation of Stochastic Effects (1)

- Higher EUV dose & increased EUV absorption can reduce the photon shot noise contribution
- Note: Availability of EUV sources with significantly higher power are too far out in time & higher EUV doses can lead to cross linking

LER versus best energy (BE) values from more than 95 exposures using 2 different CARs at 16 nm HP

- Ref: E. Butrago, et al., J. Micro/Nanolith MEMS MOEMS 15 (2016) 033502
- New EUV resist materials are needed
 - Smaller reactive volume
 - More uniform distribution of components
 - Fewer (only one?) component(s)
 - Higher dissolution contrast

16-nm half-pitch lines/spaces

Mitigation of Stochastic Effects (2)

 New EUV resist materials would ideally have smaller reactive volumes & a more uniform distribution of components

Organo-metalic Resists

Polymer-bound PAG Resists

Ref: W. Hinsberg & S. Meyer, Proc. SPIE 10146 (2017) 1014604

Note: HfO₂ or ZrO₂ nanoparticle core + organic shell (ligands) is only 2-3 nm in size but may still limit the maximum resolution

Ref: J. Thackeray, et al., J. Photopolym. Sci. Technol. 24 (2011) 179-188

Note: Attaching PAG to polymer backbone is one way to ensure more uniform distribution of components & reduce chemical shot noise 2017 EUVL Workshop

Mitigation of Stochastic Effects (3)

 New EUV resist materials should also have fewer (preferable only one) component & higher dissolution contrast

Hydrogen Silsesquioxane Resist Ref: H.Namatsu, et al., Microelectron. Eng. 42 (1998) 69-76

Note: SiH bond scission by e-beam or EUV radiation, reaction with moisture, SiO₂ formation via cross-linking but requires very high doses

Current Limits of Inorganic Resist Materials

Note: HSQ has demonstrated 8 nm L/S resolution and sub-1 nm LER

- Suggestions for future work
 - Photoresist materials that function via main chain scission
 - EUV resist materials with the ultra-regularity of a crystalline film

Key components of a free-electron laser (FEL) EUV source

~100 m

ltem	Target	Motivation/Implication
Power	>20 kW	Ten 1kW scanners (50% transport loss)
Availability	>99%	Some redundant system hardware required
CoO	~\$250M CapEx, ~\$20M OpEx	2x better than CoO for 10 LPP sources
General Configuration	Energy Recovery LINAC @ ~2K SASE Output	Maximize efficiency & minimize cost
Timing	TBD	To intercept high-NA EUV scanner insertion

Ref: E. Hosler et al., Proc. SPIE 9422 (2015) 94220D.

Mask Shadow Effect Reflectivity Apodization Telecentricity Errors

Pupil Filling @ 0.33 NA 16 nm HP Horizontal L/S

or Contrast Bossung feature2 shift and tilt best (3D mask) 8 focus1 focus2 Focus Pattern shift

feature1

Diffraction Imbalance

2017 EUVL Workshop

Compensating for EUV Mask 3D Effects

The impact of mask 3D effects on the printing of a 7 nm logic metal level using a 0.33 NA NXE scanner can be reduced using patternplacement-aware SMO software (left) and by utilizing Ni or Co-based absorbers instead of current Ta-based absorbers (right).

Ref: S. Hsu, et al., "EUV resolution enhancement techniques (RETs) for $k_1 0.4$ and below," Proc. SPIE <u>9422</u>, 94221I (2015).

Ref: V. Philipsen, et al., "Reducing EUV mask 3D effects by alternative metal absorbers," 10143-32, SPIE Advanced Lithography, 1 Mar 2017.

Higher NA EUV Projection Optics

Anamorphic projection optics, with 4x magnification ratio in the xdirection and 8x magnification ratio in the y-direction, will reduce the angular spread at the mask mainly in the y-direction, and will support the printing of a 26 mm x 16.5 mm image field at the wafer, retain a CRAO = 6°, and still allow a 6" mask to be used.

 Throughput versus source power/dose for anamorphic 4x/8x projection optics at NA > 0.5, quarter-field projection optics at NA > 0.5, and 0.33 NA projection optics in an NXE:3300 scanner.

Ref: B. Kneer, et al., "EUV lithographic anamorphic system optics for sub-9-nm resolution," Proc. SPIE <u>9422</u>, 94221G (2015).

• Learning to print with a much smaller DOF (~1/3 that of a 0.33 NA system). λ 13.5

$$\frac{\lambda}{NA^2} = \frac{13.3}{0.55^2} = 44 \text{ nm}$$

• A 0.55 NA anamorphic system will print a smaller (half-size) image field—stitching will be required to print a full 33 mm x 26 mm field.

- A larger wafer fab clean room will be needed to accommodate high-NA scanners.
- A new set of mask infrastructure tools will be required; a higher resolution blank inspection tool, a higher resolution pattern mask inspection tool, and a higher NA EUV AIMS tool.

21

- Advantages of EUV lithography are superior pattern fidelity, wider process windows, and potential for extendibility to future nodes.
- Disadvantages of EUV lithography are higher costs & complexity (than ArFi lithography) and infrastructure immaturity.
- Source/scanner availability is not yet at the level needed for SE EUV CoO comparable to triple patterning 193i CoO at the 7 nm node.
- Resist resolution, LER, and sensitivity are adequate for 7-nm, but better LCDU will be required for future nodes.
- Mask blank defectivity and yield are continuously being improved:
 - Actinic tool will be needed for blank inspection, pattern mask inspection and defect repair verification at HVM.
- Three remaining topics that still need additional work are:
 - Mitigating stochastic effects:
 - with higher EUV doses to reduce photon shot noise (less desirable option)
 - developing new EUV resist materials with smaller reactive volume, more uniform distribution of components, fewer components & higher dissolution contrast
 - Compensating for EUV mask 3D effects.
 - Imaging with higher NA projection optics.

- ASML: Stephen Hsu, Mark v.d. Kerkhof, Alexander Schafgans, Oktay Yildirim & Carmen Zoldesi
- Carl Zeiss SMT: Bernhard Kneer, Sascha Migura & Winfried Kaiser
- GLOBALFOUNDRIES: Timothy Brunner, Craig Higgins, Erik Hosler, Harry Levinson & Zhengqing John Qi
- IMEC: Vicky Philipsen
- Intel: Robert Bristol, Marie Krysak & Britt Turkot
- Kempur Microelectronics: Mark Neisser
- SUNY Poly: Robert Brainard
- Paul Scherrer Institute: Elizabeth Buitrago & Yasin Ekinci
- Samsung: Seong-sue Kim