

Next Generation Source Power Requirements Erik R. Hosler

What will we need at the 3 nm node and beyond?

Can laser produced plasma sources continue the roadmap?

Needs to future EUV manufacturing...

Lithography Performance

- Resolution
 - Sub-30 nm pitch
- LWR/LER
- LCDU
 Stochastics
- Productivity

Technology Enablement

- Not a stop-gap for process complexity
- EUV needs to enable technology
- Change of mentality:
 - NOT what layers need EUV
 - BUT what layers can be enabled
- Beyond EUV Insertion
 - Cost parity driven to match LELE
 - Longevity to vertical architecture transistors

NEWSROOM

 7LPP (7nm Low Power Plus): 7LPP will be the first semiconductor process technology to use an EUV lithography solution. 250W of maximum EUV source power, which is the most important milestone for EUV insertion into high volume production, was developed by the collaborative efforts of Samsung and ASML. EUV lithography deployment will break the barriers of Moore's law scaling, paving the way for single nanometer semiconductor technology generations.

Proc. SPIE 10143, Extreme Ultraviolet (EUV) Lithography VIII, 101431I (5 May 2017); doi: <u>10.1117/12.2258628</u>

News & Analysis Samsung Targets 4nm in 2020

Dylan McGrath 5/24/2017 05:01 PM EDT 5 comments NO RATINGS LOGIN TO RATE

Samsung has demonstrated the EUV power source production target of 250W in process development. According to Low, the "magic number" for productivity with EUV is 1,500 wafers per day. Samsung has already exceeded 1,000 wafers per day and has a high degree of confidence that 1,500 wafers per day is achievable, Low said.

"We are confident that we are ready to bring [EUV] into production in 2018," Low said. "This is no longer a concept roadmap item."

Dose Scaling with Technology and Wafer Throughput

- As target dimensions shrink
 - High-NA option \rightarrow higher dose
 - NA 0.33 \rightarrow EUV multi/self-aligned patterning
- Challenge of the middle-of-the-line (MOL)
 - ~2x mask increase per technology generation
 - OVL and Alignment
 - Self-aligned techniques (SAxP) + cuts
 - Design and Process Complexity
- EUV can reduce the number of cut, contact and via masks
 - Must be cost competitive

5

What EUV source will drive next generation fabs?

Advanced Laser Produced Plasma

Free-Electron Lasers

Next Generation Fabs...

- Necessary infrastructure changes
 - Larger fabs
- Increased CapEx investment in facility and equipment
- High-NA tools, greater productivity at 0.33 NA or increased number of EUV tools?

Pirati, A., et al. Proc. SPIE 10143, Extreme Ultraviolet (EUV) Lithography

Throughput

- Source Power
 - − pulse energy \rightarrow scan speed
 - Optics performance
- Product layout
- Overall Equipment Effectiveness (OEE)
- Fab Operations
- Wafers out per day averaged
 - collector degradation
 - service time
- Cost per wafer

					Throughput			
					Source Power (W)			
		Capa	city Model	Pellicle Transmission				
n speed		Collector	Productivity	Pulse	Pellicalized Source Power			
	Day	Reflectivity	(WPD)	Fired	Duty Cycle (%)			
		(%)	(((12))	(GP)	Field_x (mm)			
					Field_y (mm)			
					Field Utilization			
		- –)			Scanner Utilization			
ffectiveness (OEE)			Layer 1		Overall equipment effectiveness			
					Dose Margin (%)			
			Dose 1 (mJ/cm^2)		Pulse Energy (mJ)			
			# Layer 1		EUV Transmission Divisor			
			Pupil Eff	iciency (%)	SLIE (mJ/cm)			
averaged			Scan S	peed (cm/s)	Die Length plus overscan (cm)			
ــــــــــــــــــــــــــــــــــــــ			Layer 1 Pulses	s Fired (Gp)) Dies/Wafer			
Tot	al C	osts	Time	Layer 1 (s)	Die OH (s)			
Total EUV	/ OpE	Ex Cost (M€)			Wafer OH (s)			
Total NX	E:34(00 Cost (M€)			Lot OH (s			
Depreciation Timescale (vrs)					Lot Size (wfs)			
Annual Total EUV Cost (M€)					f_source			
Cost	t Per	wafer out (€)			GLOBALFOUNDRIES Public 8			

Dose Scaling and Productivity – "double" patterning

Approximate throughput calculation for either EUV LELE or high-NA

- Assume improvements in source uptime and servicability
- Improvement in optics column
- Pellicle is required, 90% transmission at all interfaces
- Source power approaching 1 kW would be preferred

Patterning Cost per layer - Dose v. Power									
		Dose (mJ/cm ²)							
(40	45	50	55	60	65	70	75
(M	200	0.99	1.05	1.12	1.19	1.25	1.31	1.38	1.45
er	300	0.88	0.93	0.98	1.04	1.09	1.14	1.20	1.25
MO	400	0.83	0.87	0.92	0.97	1.01	1.06	1.10	1.15
) P	500	0.80	0.84	0.88	0.92	0.96	1.01	1.05	1.09
rce	600	0.78	0.81	0.85	0.90	0.93	0.97	1.01	1.05
no	700	0.76	0.80	0.84	0.87	0.91	0.95	0.99	1.02
S	800	0.75	0.78	0.82	0.86	0.89	0.93	0.97	1.00
Cost Parity									
	0.6	0	.8		1	1	.2	1	.4

Advanced LPP EUV Source Architectures

High Power EUV Source for High NA EUV exposure tool

Gigaphoton

- Increased conversion efficiency and increased drive laser power
- Beyond 400-500 W requires strides in architecture development

Next Generation Pre-pulse Laser

- ✓ Pre-pulse laser technology is one of the most important component of HVM EUV Source.
- Recently we achieved 250W operation with 4% CE on Prot#2. Also Pilot#1 system is on operation around 100W with 5% CE.
- ✓ Hilase laser is one of the candidate on pre-pulse laser.

Mizoguchi, H., et al. Proc. SPIE 10097, High-Power Laser Materials Processing: Applications, Diagnostics, and Systems VI, 1009702 (22 February 2017); doi: <u>10.1117/12.2261075</u>

We offer small-footprint, thin-disk-based, regreserative emplifiers including a fiber-based front-end and patise compressor producing tasks of < 2 ps long pulses (1030 nm) in tradmandal spatial mode, (M* 1.3).

r rollable operatio

so need a high beam quality picosecond pump source

Slide 45

ASML-Cymer: Establishing a history of execution...

Proc. SPIE 10143, Extreme Ultraviolet (EUV) Lithography VIII, 101431I (5 May 2017); doi: <u>10.1117/12.2258628</u>

Free-Electron Lasers

Free-Electron Lasers HVM N3

Development of a Lithography-based FEL Scorecard

- Evolving evaluation of various FEL options
- FEL emission architecture will drive different bounds
 - SASE: self-amplified spontaneous emission
 - SS-FEL: self-seeding
 - RAFEL: regenerative amplifier FEL
- FEL requirements will drive accelerator specifications
- Lithographers ↔ Accelerator/FEL Physicists
 - Scorecard needs to be evaluated for each accelerator and FEL emission architecture

	Metric	Bounds
ſ	e ⁻ Beam Energy	± x dE/E
	FEL; e ⁻ Beam Pointing Stability	± x μm
	Magnetic Field	± %K
	Electron Beam Emittance	± <mark>%Δε</mark> mm mrad
L	EUV/e ⁻ Beam Matching	± e⁻ BL/ <mark>x</mark>
	Output Pointing Stability	± x μm
	Peak Intensity Maximum	x W/cm ²
	Output Pulse Energy	± x μJ

FEL Emission Architecture – Base Configuration Comparison

- SASE has the most rapid build-up
- SS-FEL and RAFEL yield a narrower output spectrum
 - All outputs are well within the standard EUV Mo/Si multi-layer mirror bandwidth
- Photon flux spatial distribution is tightest for RAFEL

Evaluation of planned Lithography-based FEL Scorecard

- Baseline FEL emission architecture were defined and are currently being explored in detail
 - SASE
 - Evaluated for several parameters, more robust to fluctuations, higher variation in photon energy

- SS-FEL

- Improve monochromator design, evaluate similar parameters as with SASE
- More sensitive to fluctuations
- More critical parameters
- RAFEL
 - Narrow output spectrum
 - · Acceptable performance within expected stability
 - Recirculating overlap of electron-EUV beam critical

Metric	Bounds			
e ⁻ Beam Energy	± 0.4% dE/E			
Magnetic Strength Parameter (K)	± 2 x 10 ⁻⁴ %			
e ⁻ Bunch Emittance (ε _{x,y})	ε < 0.3 mm mrad			
EUV/e ⁻ Beam Matching (SS-FEL)	± e ⁻ BL/3			
EUV/e ⁻ Beam Matching (RAFEL)	± << e ⁻ BL/3			
Output Pointing Stability	± 5 μm			
Peak Intensity Maximum	<500 mJ/cm ²			
Output Pulse Energy	± 11 μJ			

Disruptive technologies...

TESSA

- Inverse IFEL = TESSA (Tapering Enhanced <u>Stimulated</u> Superradiant Amplification)
- E-beam rapid deceleration \rightarrow laser amplification
- Requires seed pulse of high intensity (larger than FEL P_{SAT})
- E-beam can be prebunched, or it can be bunched in the first few undulator periods

- High efficiency conversion of electron beam energy to coherent radiation opens door to very high average power light sources.
- Wavelength set by e-beam energy and resonant condition -> wide tunability
 - High average power IR and visible lasers.
 - X-rays.
 - EUV-L applications.

THE LYNCEAN COMPACT LIGHT SOURCE (CLS)

A breakthrough in local, on-demand X-ray synchrotron light

The Lyncean CLS assembled at the headquarters of Lyncean Technologies, Inc. in Fremont, CA

Considerations at 3nm and beyond...

Conclusions

- Source power must scale beyond 250W
 - Pellicles must follow w.r.t. survivability
- Potential for continued LPP scaling
- Disruptive sources still possible to intercept next major architecture change
- What should be the target source power (w/pellicle) for each progressive technology?
 - − 7 nm \rightarrow 250 W
 - 5 nm \rightarrow 350 W
 - 3 nm \rightarrow 500 W
 - '2 nm' → 1 kW

Thank you

Erik R. Hosler, Lead EUV Technologist - Member of the Technical Staff

Erik.Hosler@GLOBALFOUNDRIES.com

(518) 305-1963 [F8], (717) 215-4964 [Mobile]

The information contained herein [is confidential and] is the property of GLOBALFOUNDRIES and/or its licensors.

This document is for informational purposes only, is current only as of the date of publication and is subject to change by GLOBALFOUNDRIES at any time without notice.

GLOBALFOUNDRIES, the GLOBALFOUNDRIES logo and combinations thereof are trademarks of GLOBALFOUNDRIES Inc. in the United States and/or other jurisdictions. Other product or service names are for identification purposes only and may be trademarks or service marks of their respective owners.

© GLOBALFOUNDRIES Inc. 2017. Unless otherwise indicated, all rights reserved. Do not copy or redistribute except as expressly permitted by GLOBALFOUNDRIES.