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What will we need at the 3 nm node and beyond?

Can laser produced plasma sources continue the roadmap?




Needs to future EUV manufacturing...

Lithography Performance Technology Enablement

« Resolution - Not a stop-gap for process complexity
— Sub-30 nm pitch

- EUV needs to enable technology

- LWR/LER
- Change of mentality:
- LCDU — NOT what layers need EUV
— Stochastics — BUT what layers can be enabled
 Productivity - Beyond EUV Insertion

— Cost parity driven to match LELE
— Longevity to vertical architecture transistors
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Now. .. H Comparing two dose-control techniques at 210W: higher ASML

— in-spec power with improved dose-control technique S

Previous dose-control technique

4 |

Dose Emor [%]

L Ll
0 200 400 600 1000 1200
Time [s]
209W 61.6% die yleld g
=
0 200 400 600 1000 1200

NEWSROOM

Time [s]

March 2, 2017

Improved dose-control technique |

—_ I
£ 4
5 One Hour In Spec
o 2§ >
o
o I
3 0 st Ll il L.. ailebl el oo b A I...n...l.l.l u.J.lL. il |Ju] Lid
0 500 1000 1500 2000 2500 3000 3500 4000
220 . Time [s]
210
200
0 500 1000 1500 2000 2500 3000 3500 4000

« JLPP (7nm Low Power Plus): 7LPP will be the first semiconductor process technology to
use an EUV lithography solution. 250W of maximum EUV source power, which is the
most important milestone for EUV insertion into high volume production, was developed

by the collaborative efforts of Samsung and ASML. EUV lithography deployment will
break the barriers of Moore’s law scaling, paving the way for single nanometer

semiconductor technology generations.

Proc. SPIE 10143, Extreme Ultraviolet (EUV) Lithography VIII, 1014311 (5

May 2017); doi: 10.1117/12.2258628
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News & Analysis

Samsung Targets 4nm in 2020

Dylan McGrath NO RATINGS

LOGIN TO RATE
5/24/2017 05:01 PM EDT
5 comments

Samsung has demonstrated the EUV power source production
target of 250W in process development. According to Low, the
‘magic number” for productivity with EUV is 1,500 wafers per day.
Samsung has already exceeded 1,000 wafers per day and has a
high degree of confidence that 1,500 wafers per day is
achievable, Low said.

“We are confident that we are ready to bring [EUV] into production
in 2018." Low said. “This is no longer a concept roadmap item.”
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Dose Scaling with Technology and Watfer Throughput

 As target dimensions shrink
— High-NA option = higher dose
— NA 0.33 = EUV multi/self-aligned patterning

« Challenge of the middle-of-the-line (MOL)

— ~2Xx mask increase per technology generation
« OVL and Alignment

— Self-aligned techniques (SAxP) + cuts
- Design and Process Complexity

- EUV can reduce the number of cut, contact
and via masks

— Must be cost competitive
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What EUV source will drive next generation fabs?

Advanced Laser Produced Plasma

Free-Electron Lasers

\ /

M

Parameter Specification

Wavelength 13.5nm EUV_FEL DeS|qn
Qutput power 10 kw

Bunch chare 60 pC

Beam energy 800 MeV

Accelerating gradient 12.5 MV/m
Number of SRF cavity = 9-cell cavity X 64

Beam repetition 162.5 MHz Dump

Beam current 10MeV, 10mA

ps solid state laser,
500kHz, 3mJ]/pulse

10kW FEL
output

Injector Linac
Gun 10MeV, 10mA
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1 High-NA system architecture available ASML

Public
Slide 11

o~ o P 117
Lens & illuminator SRIE20

NA >0.5 for sub-10nm resolution
High transmission

Improved metrology Mask Stage
2~3x improvement in overlay/focus 4x increase in acceleration

Next Generation Fabs...

- Necessary infrastructure changes
— Larger fabs
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ps solid state laser,
500kHz, 3mJ/pulse

- Increased CapEx investment in facility “ — = -
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control with larger optics

- High-NAtools, greater productivity at
0.33 NA or increased number of EUV

tools? T

s EUV Scanners
Control Room and Sub-systems , , , , , , l ,
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Beam Distribution

Pirati, A., et al. Proc. SPIE 10143, Extreme Ultraviolet (EUV) Lithography GLOBALFOUNDRIES Confidential 7
VIII, 101430G (27 March 2017); doi: 10.1117/12.2261079
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Throughput Throughput

. Source Power : Source Power (W)
CapaC|ty Model Pellicle Transmission
- Pulse energy > scan speed Collector ... Pulse Pellicalized Source Power
— Optics performance Day Reflectivity Prc()\cll\tljgg\)/lty Fired Duty Cycle (%)
| (%0) (GP) | Field_x (mm)
« Product layout Field_y (mm)
Field Utilization
: : Scanner Utilization
- Overall Equipment Effectiveness (OEE) Overall equipment effectiveness
Dose 1 (mJ/cm?) Dose Margin (%)

. i Pulse Energ
e Operations # Layer 1
Pupil Efficiency (%) SLIE (md/cm)
- Wafers out per day - averaged Scan Speed (CM/S)I™ pje | ength plus overscan (cm)
— collector degradation Layer 1 Pulses Fired (Gp) Dies/Wafer
— service time Time Layer 1 (s) Die OH (s)
Total EUV OpEx Cost (M€) Wafer OH (s)
. Cost per wafer Total NXE:3400 Cost (M€) Lot OH (s)
Depreciation Timescale (yrs) Lot Size (wfs)
Annual Total EUV Cost (ME€) f_source

Cost Per Wafer Out (€) GLOBALFOUNDRIES Public 8




Approximate throughput calculation for either EUV LELE or high-NA
- Assume improvements in source uptime and servicability

- Improvement in optics column

- Pellicle is required, 90% transmission at all interfaces

- Source power approaching 1 kW would be preferred

Patterning Cost per layer - Dose v. Power
Dose (mJ/cm?)
o 40 45 50 55 60 65 70 75
5_, 200 0.99 1.05 1.12 1.19 1.25 1.31 1.38 1.45
e 300 0.88 0.93 0.98 1.04 1.09 1.14 1.20 1.25
% 400 0.83 0.87 0.92 0.97 1.01 1.06 1.10 1.15
Dq-) 500 0.80 0.84 0.88 0.92 0.96 1.01 1.05 1.09
t 600 0.78 0.81 0.85 0.90 0.93 0.97 1.01 1.05
8 700 0.76 0.80 0.84 0.87 0.91 0.95 0.99 1.02
N 800 0.75 0.78 0.82 0.86 0.89 0.93 0.97 1.00
Cost Parity
0.8 1 1.2 1.4
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Advanced LPP EUV Source Architectures
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ASML-Cymer: Establishing a history of execution...

_' '_ 7 Research progress toward 400W EUV source

» Demonstrated EUV pulse
energy of 7.5mJ

» 375W in-burst at 50kHz
» Clear path to 400W identified
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Proc. SPIE 10143, Extreme Ultraviolet (EUV) Lithography VIII, 1014311 (5
May 2017); doi: 10.1117/12.2258628
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Free-Electron Lasers




Free-Electron Lasers HVM N3
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Evolving evaluation of various FEL options

FEL emission architecture will drive different
bounds

— SASE: self-amplified spontaneous emission
— SS-FEL.: self-seeding
— RAFEL: regenerative amplifier FEL

FEL requirements will drive accelerator
specifications

Lithographers < Accelerator/FEL Physicists

— Scorecard needs to be evaluated for each
accelerator and FEL emission architecture

Metric Bounds
I e  Beam Energy + x dE/E
FEL; e Beam Pointing Stability + X UM
n Magnetic Field + %K
Electron Beam Emittance + %Ae mm mrad
EUV/e- Beam Matching + e BL/x

Output Pointing Stability

Peak Intensity Maximum
Output Pulse Energy
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- SS-FEL and RAFEL yield a narrower output
spectrum

- SASE has the most rapid build

— All outputs are well within the standard EUV Mo/Si

layer mirror bandwidth
- Photon flux spatial distribution is tightest for
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Evaluation of planned Lithography-based FEL Scorecard

- Baseline FEL emission architecture were defined

. . ; Metric Bounds
and are currently being explored in detall
_ SASE e-Beam Energy + 0.4% dE/E
- Evaluated for several parameters, more robust to Magnetic Strength Parameter (K) + 2 x 104%
fluctuations, higher variation in photon energy _
_ SS-FEL e”Bunch Emittance (g, ) € < 0.3 mm mrad
- Improve monochromator design, evaluate similar EUV/e- Beam Matching (SS-FEL) + e BL/3
parameters as with SASE _
- More sensitive to fluctuations EUV/e- Beam Matching (RAFEL) + << e BL/3
* More critical parameters Output Pointing Stability +5um
— RAFEL

Peak Intensity Maximum <500 mJ/cm?
+ 11 pd

« Narrow output spectrum
« Acceptable performance within expected stability
« Recirculating overlap of electron-EUV beam critical

Output Pulse Energy

« Lithographers < Accelerator Physicists
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Disruptive technologies...

THE LYNCEAN COMPACT LIGHT SOURCE (CLS)

A breakthrough in local, on-demand X-ray synchrotron light
Inverse IFEL =>< TESSA (Tapering Enhanced Stimulated Superradiant
Amplification

E-beam rapid deceleration 2 laser amplification
Requires seed pulse of high intensity (larger than FEL Ps,;)
E-beam can be prebunched, or it can be bunched in the first few undulatorperiods

Strongly tapered undulator Amplified
/\ output pulse
Input seed laser pulse

Decelerated e-beam

High energy prebunched e-beam

« High efficiency conversion of electron beam energy to coherent radiation opens
door to very high average power light sources.
¢ Wavelength set by e-beam energy and resonant condition -> wide tunability
* High average power IR and visible lasers.
¢ X-rays.
*  EUV-L applications.

The Lyncean CLS assembled at the headquarters of Lyncean Technologies, Inc. in Fremont, CA




Considerations at 3nm and beyond...




Conclusions

Source power must scale beyond 250W
— Pellicles must follow w.r.t. survivability

Potential for continued LPP scaling

Disruptive sources still possible to intercept
next major architecture change

What should be the target source power
(w/pellicle) for each progressive technology?

— 7nm > 250 W
— 5nm > 350 W
— 3nm -> 500 W
— 2nm’ > 1 kW

Beyond?

0osC PA1 MA1 MA2 MA3 Plasma Point
L AMP  fmmmp  AMP fmmmmmt  AMP AMP S
AER A A AEE

For 250W EUV 100w 5kw 20kW 25kW

——

10kw 30kw

Amplifier system installaion in 2016

Ci6arHOTON

Basic Experiment in 2013

Cryogenic Plant

Control Room and Sub-systems

EUV Scanners

BEE
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Free-electron

Beam Distribution

THE LYNCEAN COMPACT LIGHT SOURCE (CLS)

A breakthrough in local, on-demand X-ray synchrotron light

TESSA

* Inverse IFEL= TESSA (Tapering Enhanced Stimulated Superradiant
Amplification

« E-beam rapid deceleration = laser amplification
* Requiresseed pulse of high intensity (larger than FEL P,;)
* E-beam can be prebunched, or it can be bunched in the first few undulator periods

Strongly tapered undulator Amplified
output pulse

Input seed laser pulse “ /\
m Decelerated e-beam
High energy prebunched e-beam

* High efficiency conversion of electron beam energy to coherent radiation opens
door to very high average power light sources.
* Wavelength set by e-beam energy and resonant condition -> wide tunability
* High average power IR and visible lasers.
¢ Xrays.
* EUV-L applications.

The Lyncean CLS atthe of Lyncean Tec
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Thank you

Erik R. Hosler, Lead EUV Technologist - Member of the Technical Staff
Erik.Hosler@ GLOBALFOUNDRIES.com
(518) 305-1963 [F8], (717) 215-4964 [Mobile]
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