

illuminating x-ray science™

The Compact EUV Source

Our Company

Lyncean Technologies, Inc.

- Origin: spinoff of SLAC National Accelerator Laboratory, Stanford University
- Founded: in 2002 by Prof. Ron Ruth (Stanford), Dr. Roderick Loewen, and Jeff Rifkin.
- **Current Product:** the Lyncean Compact Light Source (CLS) and measurement solutions
- Unique Core Competency: High performance accelerator based light source technology
- **Funding:** ~\$34M to date (\$4.7M equity, \$29M in government grants received)
- Commercialization Status: First product sold (2012) and in operation (2015), building sales pipeline in R&D market and developing the business in industrial / medical markets (start 2016)
- **IP Position:** 8 Issued US patents (1 with selected intl. coverage; 2 patents pending (semiconductor X-ray CD Metrology + EUV Compact Source)
- Location: Fremont, CA, USA
- Current Markets: R&D serving University and Government Labs

Lyncean Compact X-ray Light Source Commercial Electron Storage Ring

X-rays created via Inverse Compton Scattering through the synchronous interaction between low energy (25 to 45 MeV) electron beam and high power picosecond IR laser pulse

Interaction occurs 65 million times/second, creating a high flux, high brilliance light source

X-rays are monochromatic and tunable from 8 to 35 keV

- First installation at Technical University Munich, Germany for imaging applications
 - In operation since Apr 2015
- Running continuously for 2 years with high availability

www.lynceantech.com

Accelerator Based EUV Sources

Туре	Miniature Conventional Synchrotron	EUV Free Electron Laser (Linear Accelerator)	
Tech Risk	Low – Standard Technology 🗸	Low/Med Similar Systems Exist	
Size	Small 5m x 12m	Very Large (>100m long)	
Price	~30M\$	\$300M - \$500M	
EUV Power	10 W 🔀	10-20 kW 🗸	
Applicability	Metrology – Low Power Can serve multiple tools	Litho – serving multiple scanners (~10)	
Practicability	"Like Lyncean CLS" - simple	"Like a FEL facility" - complex Practical Issues (e.g. Radiation)	

Accelerator Based EUV Sources

Туре	Lyncean Compact EUV Source	EUV Free Electron Laser (Linear Accelerator)
Tech Risk	Low – Standard Technology 🗸	Low/Med Similar Systems Exist
Size	Small 5m x 12m	Very Large (>100m long)
Price	~30M\$	\$300M - \$500M
EUV Power	1 kW	10-20 kW 🗸
Applicability	Litho – serving 1 scanner	Litho – serving multiple scanners (~10)
Practicability	"Like Lyncean CLS" - simple	"Like a FEL facility" - complex Practical Issues (e.g. Radiation)

High Power with Coherent Emission

Coherent emission <u>extracts orders of magnitude more energy</u> from the beam than incoherent emission, but <u>requires low emittance, low</u> <u>energy spread electron bunches</u> for coherence

Current generation multi-bend achromat (MBA) storage rings achieve low emittance, low energy spread equilibrium electron beams compatible with coherent emission

Recirculated electron beam: no wasted energy, no beam dump and issues with generating radioactive material

≻Looks like a great idea,

BUT

Conventional wisdom: <u>"Coherent emission destroys</u> the electron beam quality and the ring will not lase"

Is that strictly true? Are there ways around it?

First consider beam characteristics of a 5-bend achromat lattice *without* coherent emission from undulator

Energy spread: must be small compared to Pierce parameter for compact gain length

Parameter	Symbol	Value	1-D Model:
Electron Energy [MeV]	Ee	497	
Charge per Bunch [nC]	Ne	3.00	$I_{\sim} \sim I_{\sim} 1 \perp 0$
Revolution Frequency [MHz]	frev	9.99	$LG \sim LG0$ $\perp \pm 0$
Average Bunch Current [A]	Bunch Iavg	0.030	L
Normalized Emittance x [mm-mrad]	<i>єп х</i>	5	$L_{CO} = -$
Normalized Emittance y [mm-mrad]	єn y	0.0167	$ = \frac{E_{G0}}{4\sqrt{2}} = 4\sqrt{2}$
Energy damping time Ring [ms]	τδ	7.65	
Beam Current [A]	Iavg	1.98	
Total Transverse Damping Time [ms]	tx,y	15.30	
RMS equilibrium Energy Spread	σE /Ee	0.047%	
RMS Bunch Length [mm]	<u> </u>	3.02	Our case:
Bunch Peak Current [A]	I peak	120.00	
Lambda undulator [cm]	lu	1.7	<i>L_{G0}</i> = 0.83 m
Pierce Parameter 1D	ρ	0.00094	
Betafunction inside andulator [m]	$\hat{\rho}$	3.7	
1-D Gain Length [m]	Lg	0.83	

<u>Electron Emittance</u>: keep small compared to $\lambda/4\pi$ for compact gain length

Parameter	Symbol	Value	Our case:
Electron Energy [MeV]	Ee	497	1/1 - 11 mm mrod
Charge per Bunch [nC]	Ne	3.00	$\lambda 4\pi = 1.1$ mm mrad
Revolution Frequency [MHz]	frev	9.99	\bigcirc
Average Bunch Current [A]	Bunch lavg	0.030	
Normalized Emittance x [mm-mrad]	єп x	5	
Normalized Emittance y [mm-mrad]	εn y	0.0167	
Energy damping time Ring [ms]	τδ	7.65	
Beam Current [A]	Iavg	1.98	
Total Transverse Damping Time [ms]	τх, у	15.30	Slightly higher
RMS equilibrium Energy Spread	σE /Ee	0.047%	omittancos aro allowable
RMS Bunch Length [mm]	σs	3.02	
Bunch Peak Current [A]	I peak	120.00	(verified by 3-D calcs ¹)
Lambda undulator [cm]	lu	1.7	and have small effect if β
Pierce Parameter 1D	ρ	0.00094	function is chosen
Betafunction inside undulator [m]	β	3.7	
1-D Gain Length [m]	Lg	0.83	correctly
			¹ Baxevanis et al. PRSTAB.2013

<u>Electron Emittance</u>: keep small compared to $\lambda/4\pi$ for compact gain length

Parameter	Symbol	Value	Our case:
Electron Energy [MeV]	Ee	497	2/4 - 11 mm mrod
Charge per Bunch [nC]	Ne	3.00	$\lambda/4\pi = 1.1$ mm mrau
Revolution Frequency [MHz]	frev	9.99	
Average Bunch Current [A]	Bunch Iavg	0.030	
Normalized Emittance x [mm-mrad]	<i>єп х</i>	5	·
Normalized Emittance y [mm-mrad]	en y	0.0167	
Energy damping time Ring [ms]	$ au\delta$	7.65	
Beam Current [A]	Iavg	1.98	
Total Transverse Damping Time [ms]	τх, у	15.30	Slightly higher
RMS equilibrium Energy Spread	σE /Ee	0.047%	omittancos aro allowab
RMS Bunch Length [mm]	σs	3.02	
Bunch Peak Current [A]	I peak	120.00	(verified by 3-D calcs ¹)
Lambda undulator [cm]	lu	1.7	
Pierce Parameter 1D	ρ	0.00094	Uur case:
Betafunction inside undulator [m]	β	3.7	
1-D Gain Length [m]	Lg	0.83	L_G increase ~30%

→ Production of coherent emission feasible, but what about the negative effects on the beam?

Parameter	Symbol	Value	
Electron Energy [MeV]	Ee	497	Increase in charmy
Charge per Bunch [nC]	Ne	3.00	increase in energy
Revolution Frequency [MHz]	frev	9.99	spread
Average Bunch Current [A]	Bunch Iavg	0.030	
Normalized Emittance x [mm-mrad]	en x	5	
Normalized Emittance y [mm-mrad]	en y	0.0167	• • • • • • • • • • • • • • • • • • • •
Energy damping time Ring [ms]	τδ	7.65	Increase in emittance
Beam Current [A]	Iavg	1.98	
Total Transverse Damping Time [ms]	τх, у	15.30	
RMS equilibrium Energy Spread	σE /Ee	0.047%	Somo floxibility in
RMS Bunch Length [mm]	σs	3.02	Some nexibility in
Bunch Peak Current [A]	I peak	120.00	relaxing L_{G} left
Lambda undulator [cm]	lu	1.7	
Pierce Parameter 1D	ρ	0.00094	j → Goal < 2m
Betafunction inside undulator [m]	β	3.7	
1-D Gain Length [m]	Lg	0.83]

Effects of Coherent Emission

- Steady state analysis reported in literature¹
- Coherent emission interaction modulates electron energy → microbunching + increased energy spread
- Microbunching is washed out in a fraction of one turn by momentum compaction and energy spread
- Effect on emittance is very small, can be ignored

¹Huang et al., NIMA 593, 120 (2008).

→ Energy spread is the main effect that needs to be controlled

Effects of Coherent Emission

- Steady state analysis reported in literature¹
- Coherent emission interaction modulates electron energy → microbunching + increased energy spread
- Microbunching is washed out in a fraction of one turn by momentum compaction and energy spread
- Effect on emittance is very small, can be ignored

Higher Energy Spread Tolerance Transverse Gradient Undulator (TGU)

Resonance condition for coherent emission:

$$\lambda_r = \frac{\lambda_u}{2\gamma_0^2} \left(1 + \frac{K_0^2}{2}\right)$$

By canting undulator poles, generate a linear gradient:

$$\frac{\Delta K}{K_0} = \alpha x$$

Sort e-beam energy by dispersion η so that:

$$x = \eta \frac{\Delta \gamma}{\gamma_0}$$

Resonance satisfied for all energies if:

$$\eta = \frac{2 + K_0^2}{\alpha K_0^2}$$

Price to pay: Increase in gain length for coherent emission **Our parameter set: Allowable energy spread 0.047\% \rightarrow 0.2\% Gain length increase 1m \rightarrow 1.6m T. Smith et al., J. App. Phys. 50, 4580 (1979)**

Steady State Operation of Storage Ring with Coherent Emission

Energy Diffusion vs. Extracted Power

For a periodic undulator the diffusion relates to the extracted power:

 $\Delta(\sigma_{\delta}^2)_{FEL} \approx 2 \frac{\rho P}{P_{beam}} \stackrel{\text{Extracted Coherent Optical Power}}{\text{Electron Beam Power (1GW)}}$

To keep diffusion at 0.5 10⁻¹⁰ the **extracted coherent power can only be 50 W!**

→ Similar to incoherent, too low!

→ To achieve 1 kW optical output power need to reduce energy diffusion by 20X

Summary Parameters

			· · ·
Parameter	Symbol	Value	 Low gain operation
Electron Energy [MeV]	Ee	497	(<<1% of laser satura
Charge per Bunch [nC]	Ne	3.00	
Revolution Frequency [MHz]	frev	9.99	 1 kW coherent EUV o
Average Bunch Current [A]	Bunch Iavg	0.030	• Colf acading (regener
Normalized Emittance x [mm-mrad]	<i>єп х</i>	5	 Sell-seeding (regener
Normalized Emittance y [mm-mrad]	εn y	0.0167	amplification) for shor
Energy damping time Ring [ms]	τδ	7.65	undulator (6 gain leng
Beam Current [A]	Iavg	1.98	
Total Transverse Damping Time [ms]	τх, у	15.30	
RMS equilibrium Energy Spread	σE /Ee	0.047%	0.2% (Optimum Comprom)
RMS Bunch Length [mm]	σs	3.02	
Bunch Peak Current [A]	I peak	120.00	
Lambda undulator [cm]	lu	1.7	
Pierce Parameter 1D	ρ	0.00094	→ 0.0049 (TGU)
Betafunction inside undulator [m]	β	3.7	
1-D Gain Length [m]	Lg	0.83	2.0 (Emittance, TGU, 3-D)

- Transverse gradient for energy tolerance
- ation saturation)
- EUV output
- egenerative or short ain lengths)

ompromise)

How Available can a Compact Storage Ring EUV Source be?

- Large synchrotron uptime (% of scheduled operation) is >>95%
 → Benchmark that is reasonably achievable and can be exceeded
- Lyncean Compact Light Source (academic use) has 5 days of scheduled maintenance per quarter (~5% of calendar time, single shift per day)

→ Reduction to 2-3 calendar days per quarter is a reasonable target for industrial application

Conclusions

- Design elements and conceptual feasibility of a 1kW coherent EUV source based on a small electron storage ring established
- Next step is optimization of design with integrated simulation components
- Followed by conceptual design study in preparation for engineering design
- Components are using standard, practical and established technology
- Extensible to higher power and shorter wavelengths (e.g. 6.x nm for future needs)

